
DepthCues: Evaluating Monocular Depth Perception in Large Vision Models

Supplementary Material

A. Additional Results on DepthCues

A.1. Full Benchmark Results

In the main paper, we reported the performance of 20 pre-
trained vision models on DepthCues and NYUv2 [28] us-
ing bar charts, and focused on salient observations. Here
we provide detailed numerical results on these datasets and
additionally the linear probing results on ImageNet-1k [6].
Moreover, we also provide an analysis of the impact of the
pre-training dataset, objective, and architectural choices of
the vision models on their performance. Our analysis is
based solely on publicly available models; therefore, as out-
lined in the limitations section of the main paper, we are
unable to control all variables in these analyses.

The probing results of all models are summarized in
Tab. A1, and the average performance of models on
DepthCues is plotted against their NYUv2 depth estimation
(Fig. A1) as well as DIW depth ordering (Fig. A2) results.
It is noted that there are slight differences between the lin-
ear probing results on NYUv2 and ImageNet-1k compared
to previous works [8, 22]. These may stem from differ-
ences in the implementation details including the features
probed, learning rates, and training iterations, etc. For ex-
ample, the probing results on NYUv2 depth estimation in
[8] are generally higher than our results. Possible reasons
for this include the following factors. Firstly, while we train
a simple linear layer to probe the patch tokens from the
last layer of the vision models, a more complex non-linear
probe similar to the DPT decoder [25] is used to probe fea-
tures from multiple layers of the models in [8]. Secondly,
the class tokens are utilized for several models (e.g., DINO,
DINOv2) in [8], while we only use patch tokens for con-
sistent evaluation across all models as some of the models
do not include a class token. Thirdly, because of the differ-
ence in the probes, their optimization hyper-parameters can
differ. Similar reasons can be applied to the differences in
our ImageNet-1k probing results from previous works. In
particular, for CLIP, the class token seems to be crucial for
its ImageNet classification ability. We made these design
choices because our primary focus is to evaluate the aware-
ness of human-like monocular depth cues in vision mod-
els in a fair and comparable manner, rather than optimizing
their probing performance on external benchmarks.
Impact of Pre-Training Dataset Size. Fig. A3 shows the
average performance of models on DepthCues against the
size of their pre-training datasets. Excluding two vision-
language models (CLIP and SigLIP) and the generative
model (StableDiffusion, which also trained for text-to-
image generation using language supervision), there is a

50 60 70 80 90
Accuracy on NYUv2 (%)

50

60

70

80

90

100

Av
er

ag
e 

A
cc

ur
ac

y 
on

 D
ep

th
C

ue
s 

(%
)

R-squared: 0.83
p-value: 2.42e-08

DepthAnyv2-b14
DINOv2-b14
DUSt3R-l16
iBOT-b16
SD2.1
DeiT-b16
DINO-b16
SigLIP-b16
MiDaS-l16
ViT-b16
SAM-b16
LRM-b14
CroCo-b16
ConvNext-b
MAE-b16
RNX50
RN50
SENet154
RN18
CLIP-b16

Figure A1. Performance of vision models on DepthCues vs.
NYUv2 depth estimation. A strong correlation is observed be-
tween depth cue understanding and depth estimation.

70 75 80 85 90
(1-WHDR) on DIW (%)

50

60

70

80

90

100

Av
er

ag
e 

A
cc

ur
ac

y 
on

 D
ep

th
C

ue
s 

(%
)

R-squared: 0.80
p-value: 1.22e-07

DepthAnyv2-b14
DINOv2-b14
DUSt3R-l16
iBOT-b16
SD2.1
DeiT-b16
DINO-b16
SigLIP-b16
MiDaS-l16
ViT-b16
SAM-b16
LRM-b14
CroCo-b16
ConvNext-b
MAE-b16
RNX50
RN50
SENet154
RN18
CLIP-b16

Figure A2. Performance of vision models on DepthCues vs.
DIW depth ordering. A strong correlation is observed between
depth cue understanding and depth estimation.

moderate positive correlation between these two variables
(Pearson’s r = 0.69, p = 0.002). Apart from the overall
trend, we observe that certain models demonstrate greater
data efficiency in developing depth cue awareness. For in-
stance, among models pre-trained on approximately 106

data samples, DINO achieves the best performance. For
those pre-trained on around 107 samples, DUSt3R emerges
as the best. Finally, when comparing models pre-trained
on roughly one order of magnitude more data, DepthAny-
thingv2 outperforms DINOv2. However, there are other



DepthCues NYUv2 ImageNet-1k

elevation (%) light-shadow (%) occlusion (%) perspective (%) size (%) texture-grad (%) depth (%) classification (%)

CLIP-b16 27.56 (2.76) 62.49 (0.19) 58.41 (0.20) 58.40 (3.06) 68.37 (0.21) 66.68 (0.77) 44.20 0.59
RN18 57.17 (0.83) 61.86 (0.84) 72.79 (0.20) 53.87 (3.97) 70.57 (0.11) 68.22 (0.35) 55.57 68.67

SENet154 55.19 (2.97) 60.95 (1.04) 74.07 (0.09) 47.47 (2.71) 76.94 (0.63) 72.30 (0.32) 61.51 81.58
RN50 58.38 (1.61) 61.26 (0.48) 75.96 (0.18) 52.53 (3.05) 76.01 (1.35) 68.26 (1.00) 58.70 73.62

RNX50 59.72 (1.73) 62.49 (0.82) 76.36 (0.20) 52.93 (5.07) 75.93 (0.77) 71.28 (0.07) 58.56 76.40
MAE-b16 51.03 (3.33) 75.72 (0.99) 68.05 (0.22) 66.93 (3.23) 74.27 (1.40) 69.96 (0.66) 56.36 25.99

ConvNext-b 62.52 (1.21) 61.86 (0.64) 75.60 (0.22) 55.07 (6.52) 79.04 (0.47) 75.98 (0.50) 70.34 80.37
CroCo-b16 56.64 (1.57) 78.28 (0.66) 69.21 (0.08) 74.53 (4.57) 75.64 (0.72) 92.40 (0.14) 68.02 14.52
LRM-b14 56.58 (1.75) 76.56 (0.68) 69.14 (0.02) 83.07 (5.79) 75.51 (0.97) 87.18 (0.51) 63.75 17.68
SAM-b16 62.33 (1.56) 74.93 (0.70) 78.29 (0.10) 89.07 (1.16) 76.74 (0.49) 77.18 (0.43) 60.97 19.58

ViT-b16 71.68 (1.57) 74.42 (0.50) 73.94 (0.06) 87.60 (2.09) 76.29 (1.42) 81.28 (0.23) 70.70 68.67
MiDaS-l16 71.04 (1.38) 77.70 (0.66) 74.02 (0.16) 84.93 (6.29) 77.70 (2.27) 83.80 (0.50) 73.93 42.79
SigLIP-b16 71.44 (4.12) 76.98 (0.53) 77.76 (0.08) 89.60 (3.64) 81.40 (1.10) 75.52 (0.13) 73.73 37.96
DINO-b16 73.80 (3.15) 75.19 (0.29) 72.63 (0.18) 91.20 (0.78) 76.88 (0.40) 85.00 (0.54) 72.26 41.29

DeiT-b16 67.44 (1.26) 79.81 (0.41) 78.00 (0.12) 91.47 (1.66) 78.17 (0.92) 80.28 (0.37) 77.77 84.53
SD2.1 69.45 (3.56) 78.53 (0.26) 78.20 (0.14) 93.07 (1.00) 77.92 (1.85) 83.50 (0.74) 74.63 32.67

iBOT-b16 72.08 (1.32) 76.05 (0.50) 75.19 (0.09) 96.67 (1.58) 79.61 (0.89) 85.24 (0.34) 78.54 38.92
DUSt3R-l16 74.65 (2.44) 76.75 (0.45) 76.02 (0.30) 95.47 (0.98) 80.31 (0.92) 89.42 (0.35) 88.59 25.94

DINOv2-b14 79.13 (1.11) 83.95 (0.25) 79.93 (0.17) 94.53 (1.86) 83.57 (0.93) 80.32 (0.49) 87.78 77.95
DepthAnyv2-b14 83.74 (0.57) 84.74 (0.68) 81.01 (0.08) 96.93 (0.90) 83.51 (1.59) 89.98 (0.34) 94.12 68.67

Table A1. Detailed evaluation results on DepthCues, depth estimation (NYUv2), and image classification (ImageNet-1k). The mean
and standard deviation of the accuracy of each vision model on the six tasks in our benchmark are summarized. The last two columns show
the accuracy of these models on NYUv2 depth estimation and ImageNet-1k classification.

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
log10(Size of Pretraining Data)

50

60

70

80

90

100

Av
er

ag
e 

Pe
rf

or
m

an
ce

 o
n 

C
ue

s 
(%

) DepthAnyv2-b14
DINOv2-b14
DUSt3R-l16
iBOT-b16
SD2.1
DeiT-b16
DINO-b16
SigLIP-b16
MiDaS-l16
ViT-b16
SAM-b16
LRM-b14
CroCo-b16
ConvNext-b
MAE-b16
RNX50
RN50
SENet154
RN18
CLIP-b16

Figure A3. Impact of pre-training dataset size on the perfor-
mance of vision models on DepthCues. Omitting the three mod-
els that involve language supervision (CLIP, SigLIP, and SD), we
observe a moderate positive correlation between depth cue under-
standing and pre-training data size.

factors such as the pre-training objective, model architec-
ture, and the dataset distribution which can confound these
analyses. It is desirable to perform future studies on the
pre-training dataset size where the aforementioned factors
are better controlled.
Impact of Pre-Training Objective. We report the average
performance achieved on DepthCues by models pre-trained
with different types of supervision in Fig. A4. On average,
models pre-trained for depth estimation obtain the high-

Clas
sif

ica
tio

n
SS

L
Dep

th

Seg
men

tat
ion MV

VLM
0

20

40

60

80

100

Av
er

ag
e 

Pe
rf

or
m

an
ce

 o
n 

C
ue

s 
(%

)

Figure A4. Average performance of vision models on
DepthCues by pre-training objective. The error bar denotes the
standard deviation over models.

est performance, followed by (single-view) self-supervised
(SSL) and multi-view models. Considering the differences
in the pre-training data of these groups, we also collate
results for different groups when the pre-training dataset
is the same. The only models that support such analysis
are either classification or SSL-based (more details in Ap-
pendix D), and their results are shown in Fig. A5. We can
see from Fig. A5 (a) and (b) that SSL methods have devel-
oped a better understanding of studied depth cues on aver-
age. However, in these two plots, the architecture of clas-
sification models is mixed (convolutional and transformer-



Classification SSL
0

20

40

60

80

100

Av
er

ag
e 

Pe
rf

or
m

an
ce

 o
n 

C
ue

s 
(%

) INet-1k Models

Classification SSL
0

20

40

60

80

100
INet-21k Models

Classification SSL
0

20

40

60

80

100
INet-21k ViTs

(a)

Classification SSL
0

20

40

60

80

100

Av
er

ag
e 

Pe
rf

or
m

an
ce

 o
n 

C
ue

s 
(%

) INet-1k Models

Classification SSL
0

20

40

60

80

100
INet-21k Models

Classification SSL
0

20

40

60

80

100
INet-21k ViTs

(b)

Classification SSL
0

20

40

60

80

100

Av
er

ag
e 

Pe
rf

or
m

an
ce

 o
n 

C
ue

s 
(%

) INet-1k Models

Classification SSL
0

20

40

60

80

100
INet-21k Models

Classification SSL
0

20

40

60

80

100
INet-21k ViTs

(c)

Figure A5. Average performance of vision models on
DepthCues by pre-training objective, with fixed pre-training
data. We show results for ImageNet-1k (a) and ImageNet-21k
models (b), and ImageNet-21k ViT-based models (c). The error
bar denotes the standard deviation over models.

CNNs ViTs
0

20

40

60

80

100

Av
er

ag
e 

Pe
rf

or
m

an
ce

 o
n 

C
ue

s 
(%

) All Models

CNNs ViTs
0

20

40

60

80

100
INet-21k Cls. Models

(a)

CNNs ViTs
0

20

40

60

80

100

Av
er

ag
e 

Pe
rf

or
m

an
ce

 o
n 

C
ue

s 
(%

) All Models

CNNs ViTs
0

20

40

60

80

100
INet-21k Cls. Models

(b)

Figure A6. Average performance of vision models on
DepthCues by model architecture. We show results for all mod-
els (a) and ImageNet-21k classification models (b). The error bar
denotes the standard deviation over models.

Patch size-14 Patch size-16
0

20

40

60

80

100

Av
er

ag
e 

Pe
rf

or
m

an
ce

 o
n 

C
ue

s 
(%

) ViT Models

Figure A7. Average performance of ViT-based models on
DepthCues by patch size. The error bar denotes the standard de-
viation over models.

based models), whereas SSL models only contain ViT back-
bones. Therefore, we further reduce the effect of architec-
ture and show a comparison for ViT-only models (‘Base’
models; patch size 16) in Fig. A5 (c), where we still see an

0

20

40

60

80

Ac
c.

elevation

0

20

40

60

80

Ac
c.

light-shadow

0

20

40

60

80

Ac
c.

occlusion

DIN
Ov2

-b1
4

Dep
th

Any
v2

-b1
4

0

20

40

60

80

100

Ac
c.

perspective

DIN
Ov2

-b1
4

Dep
th

Any
v2

-b1
4

0

20

40

60

80

Ac
c.

size

DIN
Ov2

-b1
4

Dep
th

Any
v2

-b1
4

0

20

40

60

80

Ac
c.

texture-grad

Linear probe Non-linear probe

Figure A8. Linear vs. non-linear probes. We see consis-
tently better performance from non-linear probes across the tasks
in DepthCues.

SD2.1

Dep
th

Any
v2

-b1
4

SAM-b1
6

MAE-b1
6

0

25

50

75

100

Ac
c.

perspective
MLP probe Attentive probe

Figure A9. MLP vs. Attentive probe on the perspective task.
We observe that for a task that requires global information, the
attentive probe yields better results than an MLP.

advantage from the SSL model (iBOT) over the classifica-
tion ones (ViT and DeiT).
Impact of Model Architecture. Here we compare the aver-
age depth cue awareness between vision transformer (ViT)-
based models and models with convolutional architectures
(CNNs). Fig. A6 (a) shows the results for all evaluated mod-
els, regardless of pre-training objective and dataset, where
we see a clear advantage of the ViT models. To reduce con-
founding factors, in Fig. A6 (b) we also compare these ar-
chitectures when the pre-training setting is fixed to be clas-
sification on ImageNet-21k. It is observed that under such



a setting, the two ViT models (ViT and DeiT) demonstrate
enhanced knowledge of depth cues compared to ConvNext.
Impact of Patch Size on ViT Models. We also perform a
comparison between ViT models regarding their patch size.
As shown in Fig. A7, models with a smaller patch size (14
vs. 16) achieved better average performance on DepthCues.
However, it is noted that the “patch size-14” models only
include DINOv2, DepthAnythingv2, and LRM, and there
may be other factors that led to their superior performance.

A.2. Comparison Between Probes

As discussed in Sec. 4.2 in the main paper, we adopt non-
linear probes to evaluate models on DepthCues. Specifi-
cally, an MLP probe is used for light-shadow, occlusion,
size, and texture-grad, and an attentive probe [1, 9] is used
for elevation and perspective. Our motivation for using
these instead of linear probes is that it is not clear that the so-
lutions to our tasks should be a linear function of the model
features. In addition, non-linear probes have been adopted
in previous work on probing vision models for depth esti-
mation [8, 10]. To justify our choice empirically, we com-
pare our non-linear probes and the linear probe. Following
the same protocol described in the main paper, we obtained
additional linear probing results of two models (DINOv2
and DepthAnythingv2) on all six depth cue tasks. The re-
sults are summarized in Fig. A8, showing that our non-
linear probes consistently outperform linear probes, based
on the average of five runs, although the gap is small for
size and texture-grad. Moreover, for the light-shadow task,
the performance of the linear probe is close to random, in-
dicating that a linear classifier is not sufficient to solve the
problem using these models’ features.

For elevation and perspective, our choice of the atten-
tive probe, instead of the MLP probe used for the other four
tasks, is motivated by the extra step in the former for ag-
gregating global information, which we consider important
for these two tasks. This is also supported by our results
in Fig. A9, where it can be seen that the attentive probe re-
sults in significant performance gains for most models on
the perspective task.

A.3. Hyper-Parameter Search Results

It has been shown in previous works [21, 42] that differ-
ent layers of pre-trained vision models have varied perfor-
mance when probed for different tasks. Therefore, for all
the 20 vision models, we perform a hyper-parameter search
on their layers. We restrict the search to four layers for each
model, which are selected by equally dividing the networks
into four blocks (similar to [8]), where applicable. We train
the probes on features from each block, and evaluate their
validation performance. The layer with the best validation
result is then selected for subsequent analysis. The layer
search results for all models are summarized in Tab. A2.

Consistent with previous findings, we observe that different
layers of a model exhibit varying strengths. For instance,
in DINOv2, the 9th layer achieved the best performance
on light-shadow and occlusion, the 12th layer provides su-
perior features for elevation, perspective, and size, while
texture-grad is handled best by the 6th layer.

A.4. Example Model Failure Cases

We examine where vision models consistently fail. Focus-
ing on the top-five models, namely DepthAnythingv2, DI-
NOv2, DUSt3R, iBOT, and StableDiffusion, we identify
test instances where they all fail to predict the correct la-
bel over five runs, and visualize these cases in Fig. A10.

Elevation. In the first (top row) instance of Fig. A10 (a), the
horizon line is largely occluded by the architectures, mak-
ing it a challenging case. In the second case (bottom row),
although the horizon line is less occluded by objects, its
visibility is still low due to the fog, which can be a possible
explanation for the failure of the models.

Light-shadow. In both of the examples in Fig. A10 (b), the
target objects (overlaid with red masks) and query shadows
(overlaid with green masks) overlap with each other, pos-
sibly affecting the models’ predictions. This is especially
the case for the second image, where the true shadow of the
target object also overlaps with the false query shadow.

Occlusion. The first example (top row) of Fig. A10 (c) is
challenging because the person highlighted with a red mask
undergoes only very minor occlusion, limited to his feet.
In the second example, the stones are treated as one object
and labeled occluded in the source data [44], which can be
confused with their individual boundaries or occlusions.

Perspective. Both of the examples in Fig. A10 (d) contain
distractors that weaken the notion of the dominant vanish-
ing point. In the first example (top), while the ground-truth
label indicates the converging point of the two sides of the
staircase, some models are influenced by the parallel lines
formed by the bricks on the walls. In the second example
(bottom), some models might be affected by the intersection
line of the mountain and sky.

Size. In the first example of Fig. A10 (e), all models incor-
rectly predicted that the car (highlighted in red) has a larger
3D size than the van (highlighted in green). In the second
example, while the trailer (green) has a smaller size than the
car, all models predicted the opposite case. These indicate
limitations in the models’ understanding of the size cue.

Texture-grad. All models failed to predict the correct depth
order in both cases in Fig. A10 (f). In these challenging im-
ages, the texture gradient cue is relatively weak, and the
locations of the two regions are not drastically different,
which can make these cases challenging.



Model Layers Probed Elevation (%) Light-shadow (%) Occlusion (%)

Block 1 Block 2 Block 3 Block 4 Block 1 Block 2 Block 3 Block 4 Block 1 Block 2 Block 3 Block 4

CLIP-b16 {3, 6, 9, 12} 0.189 0.243 0.372 0.355 66.357 64.965 65.893 65.429 58.283 57.531 55.912 56.206
RN18 {1, 2, 3, 4} 0.145 0.127 0.122 0.105 64.965 63.805 65.197 65.029 58.360 67.302 73.175 66.744

SENet154 {1, 2, 3, 4} 0.120 0.108 0.105 0.112 65.893 66.357 66.473 67.749 60.987 74.066 73.532 68.681
RN50 {1, 2, 3, 4} 0.138 0.118 0.096 0.109 65.197 65.429 65.313 69.026 59.391 65.737 75.701 70.735

RNX50 {1, 2, 3, 4} 0.136 0.113 0.097 0.113 65.777 65.545 66.357 68.329 59.329 69.913 76.554 67.480
MAE-b16 {3, 6, 9, 12} 0.151 0.130 0.116 0.122 81.323 81.787 82.251 80.510 61.623 63.381 67.550 66.744

ConvNext-b {1, 2, 3, 4} 0.129 0.121 0.108 0.096 65.197 66.125 69.722 67.169 59.623 65.838 75.136 71.347
CroCo-b16 {3, 6, 9, 12} 0.125 0.111 0.107 0.108 83.411 83.991 83.759 83.411 62.870 65.946 68.712 68.271
LRM-b14 {3, 6, 9, 12} 0.135 0.108 0.108 0.114 68.677 81.903 84.919 83.411 62.142 67.651 69.650 67.256
SAM-b16 {3, 6, 9, 12} 0.133 0.111 0.085 0.084 80.046 80.858 80.046 80.278 63.513 72.571 78.080 78.700

ViT-b16 {3, 6, 9, 12} 0.101 0.081 0.087 0.098 79.466 81.671 76.798 70.186 64.637 72.393 73.291 67.883
MiDaS-l16 {6, 12, 18, 24} 0.108 0.078 0.091 0.083 83.759 80.974 79.814 78.886 69.882 73.524 73.408 73.222
SigLIP-b16 {3, 6, 9, 12} 0.090 0.072 0.072 0.083 80.858 86.543 81.903 71.694 68.852 76.809 74.508 70.277
DINO-b16 {3, 6, 9, 12} 0.099 0.073 0.073 0.074 81.206 82.483 83.179 81.903 65.791 72.641 73.470 73.617

DeiT-b16 {3, 6, 9, 12} 0.091 0.084 0.086 0.118 83.527 87.007 73.434 66.357 68.681 77.158 73.679 67.488
SD2.1 {1, 2, 3, 4} 0.100 0.094 0.096 0.139 81.090 88.399 79.698 66.125 69.371 77.096 72.129 59.468

iBOT-b16 {3, 6, 9, 12} 0.114 0.093 0.081 0.078 78.190 82.947 83.527 83.527 62.994 72.772 75.027 73.570
DUSt3R-l16 {18, 24, 33, 36} 0.066 0.076 0.083 0.093 83.759 86.427 85.383 82.251 73.764 69.975 74.330 75.833

DINOv2-b14 {3, 6, 9, 12} 0.117 0.073 0.068 0.065 67.053 79.234 89.211 87.935 63.412 76.399 79.544 75.205
DepthAnyv2-b14 {3, 6, 9, 12} 0.114 0.070 0.064 0.058 66.473 79.350 90.603 90.023 63.436 77.111 80.962 77.057

Model Layers Probed Perspective (%) Size (%) Texture-grad (%)

Block 1 Block 2 Block 3 Block 4 Block 1 Block 2 Block 3 Block 4 Block 1 Block 2 Block 3 Block 4

CLIP-b16 {3, 6, 9, 12} 0.259 0.230 0.253 0.264 73.636 73.635 72.727 70.909 67.000 64.900 63.600 61.200
RN18 {1, 2, 3, 4} 0.290 0.265 0.235 0.259 68.485 78.788 77.273 77.273 67.400 65.300 64.500 63.700

SENet154 {1, 2, 3, 4} 0.270 0.250 0.262 0.294 74.242 77.879 83.333 81.515 69.200 74.800 66.300 64.400
RN50 {1, 2, 3, 4} 0.296 0.290 0.230 0.264 73.030 75.455 78.788 78.485 68.500 69.000 70.200 67.300

RNX50 {1, 2, 3, 4} 0.294 0.270 0.240 0.277 70.606 78.182 80.606 76.061 68.900 72.600 69.000 65.200
MAE-b16 {3, 6, 9, 12} 0.264 0.240 0.218 0.217 76.364 79.697 79.696 78.485 66.300 69.500 68.900 69.800

ConvNext-b {1, 2, 3, 4} 0.291 0.296 0.244 0.248 71.818 74.242 80.303 81.818 70.800 73.600 61.600 63.600
CroCo-b16 {3, 6, 9, 12} 0.234 0.177 0.148 0.153 76.364 77.273 79.091 78.788 74.900 89.800 91.600 92.700
LRM-b14 {3, 6, 9, 12} 0.253 0.200 0.146 0.137 75.152 78.485 80.000 79.697 66.900 72.900 81.000 87.800
SAM-b16 {3, 6, 9, 12} 0.224 0.178 0.116 0.145 76.667 80.909 80.606 80.909 76.800 78.200 74.600 71.800

ViT-b16 {3, 6, 9, 12} 0.149 0.109 0.108 0.213 77.879 79.394 80.000 78.788 75.100 82.600 76.000 70.100
MiDaS-l16 {6, 12, 18, 24} 0.227 0.135 0.137 0.158 76.970 78.788 77.879 78.485 84.100 85.200 84.000 83.300
SigLIP-b16 {3, 6, 9, 12} 0.181 0.111 0.124 0.161 79.091 81.515 79.697 82.121 76.700 78.300 69.700 61.700
DINO-b16 {3, 6, 9, 12} 0.152 0.078 0.092 0.115 77.576 80.303 77.576 79.091 80.000 84.700 84.900 84.000

DeiT-b16 {3, 6, 9, 12} 0.179 0.107 0.194 0.251 77.576 80.909 80.303 80.606 79.900 81.100 72.100 62.500
SD2.1 {1, 2, 3, 4} 0.102 0.110 0.105 0.297 79.091 81.212 79.091 73.636 81.800 83.200 79.600 70.300

iBOT-b16 {3, 6, 9, 12} 0.182 0.086 0.069 0.078 79.091 80.909 79.697 81.818 80.400 83.600 85.100 84.200
DUSt3R-l16 {18, 24, 33, 36} 0.076 0.097 0.098 0.106 83.636 85.455 82.121 77.576 87.500 87.600 91.700 91.900

DINOv2-b14 {3, 6, 9, 12} 0.218 0.142 0.089 0.088 79.091 79.697 82.727 85.455 77.200 82.500 80.800 80.600
DepthAnyv2-b14 {3, 6, 9, 12} 0.189 0.091 0.085 0.092 77.576 83.030 82.424 86.667 76.700 83.000 86.100 90.000

Table A2. Layer search for all models on all tasks in DepthCues. We report the validation performance of different layers, and bold
the best score for each model. Note that “Block i” corresponds to the ith layer indicated in the second column. Horizon detection error
and Euclidean distance are used to assess validation performance for elevation and perspective respectively, while accuracy is used for the
other four tasks.

DepthCues (%)

elevation light-shadow occlusion perspective size texture-grad

DINOv2 77.46 83.26 75.35 96.00 83.57 78.90
DINOv2+DC 79.84 (+2.38) 82.67 (-0.59) 76.11(+0.76) 94.00 (-2.00) 86.10 (+2.53) 88.30 (+9.40)

Table A3. Probing results of the original and fine-tuned DI-
NOv2 on DepthCues. Here ‘+DC’ indicates the fine-tuned model.
We observe an overall increase in performance, especially on
texture-grad.

A.5. Learning Depth Cues

In Sec. 5.2 of the main paper, we presented linear probing
results on NYUv2 and DIW, showing that fine-tuning on
DepthCues improves models’ performance on depth esti-

Model NYUv2 Acc. (%) ↑ DIW WHDR (%) ↓
DINOv2 87.81 (0.09) 11.95 (0.05)
concat(DINOv2, DINOv2+DC ) 88.43 (0.09) 11.66 (0.11)

CLIP 43.82 (0.04) 35.33 (0.09)
concat(CLIP, CLIP+DC ) 44.40 (0.18) 32.69 (0.98)

Table A4. Linear probing on downstream depth estimation
with different random seeds. Fine-tuning on DepthCues bench-
mark is also repeated.

mation. Here we further investigate whether the fine-tuned
model has improved understanding of the depth cues by
comparing the probing results of the fine-tuned and pre-
trained DINOv2 on DepthCues. Note we focus on probing



Figure A10. Failure cases of the top-five vision models on DepthCues. Each column shows two examples for a depth cue.

MiD
aS

-l1
6

MoG
e-l

16

Dep
th

Any
-b1

4

Dep
th

Any
v2

-b1
4

60

70

80

90

100

Ac
c.

elevation

MiD
aS

-l1
6

MoG
e-l

16

Dep
th

Any
-b1

4

Dep
th

Any
v2

-b1
4

60

70

80

90

100

Ac
c.

light-shadow

MiD
aS

-l1
6

MoG
e-l

16

Dep
th

Any
-b1

4

Dep
th

Any
v2

-b1
4

60

70

80

90

100

Ac
c.

occlusion

MiD
aS

-l1
6

MoG
e-l

16

Dep
th

Any
-b1

4

Dep
th

Any
v2

-b1
4

60

70

80

90

100

Ac
c.

perspective

MiD
aS

-l1
6

MoG
e-l

16

Dep
th

Any
-b1

4

Dep
th

Any
v2

-b1
4

60

70

80

90

100

Ac
c.

size

MiD
aS

-l1
6

MoG
e-l

16

Dep
th

Any
-b1

4

Dep
th

Any
v2

-b1
4

60

70

80

90

100
Ac

c.
texture-grad

Figure A11. Performance of monocular depth estimation models on DepthCues. Here we evaluate recent depth estimation models, and
observe that these models show competitive performance, indicating their strong understanding of the monocular depth cues.

the last layer since LoRA was only applied on that layer
during fine-tuning. The results from Tab. A3 shows that the
fine-tuned version outperforms the original DINOv2 on four
cues, with a slight drop in performance on light-shadow and
perspective. Notably, we see a 9.4% increase in accuracy
on texture-grad, on which the original DINOv2 shows rela-

tively weaker understanding (see Fig. 3 in the main paper).
In addition, we repeated the fine-tuning (on DepthCues)
and evaluation of DINOv2 and CLIP on NYUv2 and DIW
with three different random seeds, and show the results in
Tab. A4, where significant improvements are observed.



75 80 85 90 95
Accuracy on NYUv2 (%)

75

80

85

90

95

100

Av
er

ag
e 

Pe
rf

or
m

an
ce

 o
n 

C
ue

s 
(%

) DepthAnyv2-b14
DepthAny-b14
MoGe-l16
MiDaS-l16

Figure A12. Performance on monocular depth estimation mod-
els DepthCues vs. NYUv2 depth estimation.

DAv2 ver. Ele. Lit-shd. Occ. Prsp. Size Txt.-grd.

relative 83.73 84.65 81.16 95.33 82.16 89.90
abs. (outdoor) 74.96 82.91 78.60 92.00 83.85 88.70
abs. (indoor) 79.96 82.44 79.67 94.67 83.43 89.90

Table A5. Probing results of relative vs. metric versions of
DepthAnyv2 on DepthCues.

A.6. Monocular Depth Estimation Models

In addition to the 20 vision models evaluated in the main
paper, here we present additional results for some recent
monocular depth estimation models: DepthAnything [39]
and MoGe [31]. The average performance of these models
on DepthCues and depth estimation is shown in Fig. A11
and Fig. A12, along with the two depth models already in-
cluded in our study. In general, we observe a similar trend
to our previous findings, that the models’ depth estimation
performance highly correlates with their performance on
DepthCues.
Relative vs. Metric Depth Models. The DepthAnythingv2
model checkpoint we evaluated so far was pre-trained for
relative depth estimation. Here we additionally evaluate the
two publicly available metric versions of DepthAnythingv2
on DepthCues, which are fine-tuned from the relative ver-
sion on indoor and outdoor datasets respectively. It is ob-
served from Tab. A5 that the metric versions achieved lower
performance than the relative one. As metric models are
fine-tuned from the relative one on smaller datasets, the dif-
ference in performance could also be impacted by the train-
ing data. We leave further investigation to future work.

B. Dataset Construction Details
Here we provide additional details on the construction of
the DepthCues benchmark and show other examples from
the datasets.

Instance Selection for Size. To create an instance for the
size dataset, we sample two objects from an image, and ob-
tain the label by comparing the volumes of their 3D bound-
ing boxes (provided by the source datasets, KITTI [11] and
SUN-RGBD [29]). It is mentioned in the main paper that a
threshold is applied to filter out cases where the difference
in the sizes of the two objects is very small. This is moti-
vated by our observation that the 3D bounding boxes from
the source datasets can contain minor errors. Therefore, to
reduce mislabeling in the size dataset, we apply a minimum
threshold of 2.5 m3 for the size difference between two ob-
jects in an image from KITTI, and a threshold of 0.4 m3

for SUN-RGBD. We found empirically that these thresh-
olds provided a good balance between label accuracy and
dataset size.
Generating Masks with SAM. Four of the tasks in
DepthCues, namely light-shadow, occlusion, size, and
texture-grad, require object masks for the probing evalua-
tion. The object masks for light-shadow and occlusion are
directly obtained from their source datasets [33, 44], and the
masks for texture-grad are manually defined during dataset
synthesis (see Sec. 3.6 in the main paper). However, the ob-
ject masks for the size task are not available in the source
datasets which are originally designed for 3D object detec-
tion. Therefore, we made use of an off-the-shelf segmen-
tation model, SAM [19], to create these masks. Specifi-
cally, for each object, we obtain its 2D bounding box from
the source dataset, and discard the object if its 2D bound-
ing box has a height/width less than eight pixels, to filter
out potentially incorrect annotations. Next, we predict the
mask for an object by feeding its 2D bounding box and the
image to SAM, and only keep the part of the mask that falls
into the 2D bounding box. Finally, to make sure the desired
object is segmented, we check whether the mask takes up
a too small portion of the bounding box (< 20%), and dis-
card the object if that is the case. These filtering steps are
applied to both objects in a candidate image, and the can-
didate is included in the dataset only if both object masks
pass these checks (and satisfy the size difference threshold
specified above).
More Examples from the Datasets. Additional examples
from the DepthCues datasets are shown in Fig. A13.

C. Additional Implementation Details

C.1. Probing Experiments

Probing Method. To evaluate vision models on
DepthCues, we adopt a probing approach. While the task-
specific feature extraction procedure and the probe models
have been discussed in the paper, we illustrate the processes
in Fig. A14.
Training Settings. The MLP probes for light-shadow, oc-
clusion, size, and texture-grad are trained with a binary



Figure A13. Examples data instances from DepthCues. The horizon lines for elevation and the vanishing points for perspective are
indicated by red lines and dots respectively. For the other four cues where we define binary classification tasks, the labels are indicated by
the ticks and crosses.

Figure A14. Method for probing vision models on DepthCues.
We extract task-specific features from the image I using the vi-
sion model ϕ(⊙) and object masks where applicable, then train
the MLP or attentive probe to solve the tasks in DepthCues. For
illustrative purposes, here we only show 3× 3 image features, but
in practice, the spatial resolution is much higher.

cross-entropy loss since the associated tasks are binary clas-
sification ones. The attentive probes for elevation and per-
spective are trained with mean squared error loss due to
their regression nature. All the MLP probes (for all tasks
and all models) are trained for approximately 30k itera-
tions with a batch size of eight, and the attentive probes

are trained for 3,750 iterations with a batch size of 64. We
used the AdamW [18] optimizer with cosine learning rate
decay. For the hyperparameter search over model layers,
we follow [8] and partition the networks into four equal-
sized chunks, and evaluate the features from each chunk.
For example, for DINOv2-b14, we search over layers 3, 6,
9, and 12.
Computational Cost. We provide an estimation of the
computational cost for evaluating a model based on the ViT-
Base architecture on DepthCues, using the standard imple-
mentation1 of DINO [3]. Based on the statistics of our
experiment runs, on a single NVIDIA RTX A5000 GPU
(24GB VRAM), benchmarking a ViT-Base on DepthCues
under our protocol and settings takes approximately 241
hours. This includes 92.7 hours for searching for the best
layer for each cue (24 training + validation runs: 6 cues ×
4 layers), and 148.3 hours for repeating the probing of the
best layer (30 training + test runs: 6 cues × 5 repeats for
statistical robustness). Note, these timings assume that the
selected layer is the last one (i.e., layer 12 for a ViT-Base
model), and the total time can be lower than the estimate
if this is not the case and the model is truncated up to the

1https://github.com/facebookresearch/dino.

https://github.com/facebookresearch/dino


0.0
75

0.1
00

0.1
25

0.1
50

0.1
75

0.2
00

0.2
25

0.2
50

Euclidean distance

50

60

70

80

90

100

A
cc

ur
ac

y 
(t

hr
es

ho
ld

=
0.

2)

R-squared: 0.99
p-value: 1.93e-19

Perspective DepthAnyv2-b14
DINOv2-b14
DUSt3R-l16
iBOT-b16
SD2.1
DeiT-b16
DINO-b16
SigLIP-b16
MiDaS-l16
ViT-b16
SAM-b16
LRM-b14
CroCo-b16
ConvNext-b
MAE-b16
RNX50
RN50
SENet154
RN18
CLIP-b16

Figure A15. Validating the threshold for evaluation of perspec-
tive. We used a threshold of 0.2 to convert the Euclidean distance
between ground-truth and predicted vanishing points to accuracy.

0.0
6

0.0
8

0.1
0

0.1
2

0.1
4

0.1
6

0.1
8

0.2
0

Horizon Detection Error

20

30

40

50

60

70

80

A
cc

ur
ac

y 
(t

hr
es

ho
ld

=
0.

1)

R-squared: 0.97
p-value: 5.62e-15

Elevation DepthAnyv2-b14
DINOv2-b14
DUSt3R-l16
iBOT-b16
SD2.1
DeiT-b16
DINO-b16
SigLIP-b16
MiDaS-l16
ViT-b16
SAM-b16
LRM-b14
CroCo-b16
ConvNext-b
MAE-b16
RNX50
RN50
SENet154
RN18
CLIP-b16

Figure A16. Validating the threshold for evaluation of eleva-
tion. We used a threshold of 0.1 to convert the horizon detection
error to accuracy.

desired layer.

C.2. Evaluation Metrics

While we use accuracy to evaluate performance on the bi-
nary classification tasks, as discussed in the main paper we
apply thresholding to the Euclidean distance (for perspec-
tive) and horizon detection error2 [37] (for elevation) to
convert these metrics into accuracy. Specifically, we used
a threshold of 0.2 for perspective and 0.1 for elevation. We
validate these choices of thresholds by evaluating the corre-
lation between the original metrics and converted accuracies
in Figs. A15 and A16.

2This measures the maximum distance between the predicted and the
ground-truth horizon lines, normalized by the image height.

For evaluation of depth estimation on NYUv2, as in [2,
8], we use accuracy, which is calculated per image using the
ground-truth and predicted depth maps, d, d̂ , as:

Acc =
1

N

N∑
i=1

max(
d̂i
di
,
di

d̂i
) < 1.25, (1)

where N denotes the number of pixels in the image. For
evaluation on DIW [4], we report the Weighted Human Dis-
agreement Rate (WHDR), which measures the proportion
of depth order predictions that disagree with the manual la-
bels provided in DIW.

C.3. Fine-Tuning on DepthCues

To fine-tune the vision models on DepthCues we use Low
Rank Adaptation (LoRA) [16]. Here, we specify our im-
plementation for the fine-tuned models for DINOv2. We
add LoRA to the query and value projection matrices of the
self-attention block in the last layer. That is, the new query
q and value v for a token x are obtained as

q = WQx+∆WQx,v = WV x+∆WV x, (2)

∆WQ = BQAQ ∆WV = BV AV , (3)

where BQ, BV ∈ RD×R and AQ, AV ∈ RR×D. To make
∆WQ,∆WV the low-rank approximations of the original
query and value projection matrices, we set R to 4, which
is much smaller compared to the original feature dimension
D (768 for DINOv2) of the model.

To train the models on DepthCues tasks, we attach a
two-layer MLP with an intermediate GELU activation [14]
and output neurons corresponding to the tasks. The models
(LoRA weights and the MLP) are trained for around 15,000
iterations using AdamW [18] optimizer with cosine learn-
ing rate decay and a batch size of 32. The learning rate is
set to 10−5 at the start and warms up to 10−3.

D. Evaluated Models
Here we describe each model we evaluated in DepthCues,
grouped by the supervision type. We summarized the ar-
chitecture, supervision, and training dataset, along with the
median rank (m-Rank) of each model in Tab. A6. The me-
dian rank is calculated based on the model’s rank for each
cue. For all models, we used publicly available checkpoints
provided by the official codebases or from the timm [35] or
transformers [36] Python libraries.
Categorization. The following models are trained for im-
age classification problems with category labels using the
ImageNet dataset [6]. ResNet18 (RN18) and ResNet50
(RN50) [12] are convolutional neural networks with resid-
ual connections. ResNext50 (RNX50) [38] and SENet
(SENet154) [17] are extensions of residual convolutional
networks, offering improved efficiency and scalability.



m-Rank Model Architecture Supervision Dataset (Size)

17.5 ResNet18 [12] ResNet Category ImageNet (1.2M)
16 ResNet50 [12] ResNet Category ImageNet (1.2M)
15 ResNext50 [38] ResNet Category ImageNet (1.2M)
16.5 SENet [17] ResNet Category ImageNet (1.2M)
11.5 ViT [7] ViT-B/16 Category ImageNet (14M)
6.5 DeiT III [30] ViT-B/16 Category ImageNet (14M)
12.5 ConvNext [20] CNXT-B/16 Category ImageNet (14M)
17.5 MAE [13] ViT-B/16 Self-Supervised ImageNet (1.2M)
5 iBOT [43] ViT-B/16 Self-Supervised ImageNet (14M)
9 DINO [3] ViT-B/16 Self-Supervised ImageNet (1.2M)
2 DINOv2 [22] ViT-B/14 Self-Supervised LVD (142M)
6.5 StableDiffusion [26] UNet Language LAION (5B)
8 MiDaS [24] ViT-L/16 Depth MIX-6 (1.9M)
1 DepthAnythingv2 [40] ViT-B/14 Depth MIX-13 (0.5M+62M)
14.5 LRM [15] ViT-B/14 Multi-View & 3D Objaverse (10M), MVImgNet (6.5M)
14 CroCo [34] ViT-B/16 Multi-View & Self-Supervised Habitat (1.8M)
3.5 DUSt3R [32] ViT-L/16 Multi-View & 3D MIX-8 (8.5M)
11.5 SAM [19] ViT-B/16 Segmentation SA (1B)
20 CLIP [23] ViT-B/16 Language LAION (2B)
7.5 SigLIP [41] ViT-B/16 Language WebLI (18B)

Table A6. Evaluated vision models. We consider a range of publicly available large vision models that span several forms of supervision.
In most cases, we select checkpoints of comparable model and training size. We also report the median rank (m-Rank) of each model,
which is calculated based on the model’s rank for each cue in DepthCues.

ConvNext (ConvNext-b) [20] is also designed with convolu-
tional blocks, but its design choices are reconsidered based
on the success of recent transformer-based [7] models. ViT
(ViT-b16) [7] and DeiT III (DeiT-b16) [30] are transformer-
based image models built on multi-head attention. We use
the base configuration with 16 patch sizes for both models.
Depth. MiDaS (MiDaS-l16) [24] and DepthAnythingv2
(DepthAnyv2-b14) [40] are models trained with dense
depth supervision. Both models use transformer architec-
tures and are trained on a mix of datasets containing dense
depth supervision for pixel values. The encoder network
of DepthAnythingv2 is initialized with DINOv2 [22], while
MiDaS is trained from scratch.
Segmentation. SAM (SAM-b16) [19] is trained on a large-
scale segmentation dataset that provides dense pixel-level
category information.
Language. CLIP (CLIP-b16) [23] and SigLIP (SigLIP-
b16) [41] are trained to align the representations of images
with their textual descriptions with a contrastive objective.
StableDiffusion (SD2.1) [26] is a diffusion-based genera-
tive network that produces images conditioned on text de-
scriptions. It is trained on a large-scale dataset[27] contain-
ing image-text pairs.
Multi-View. CroCo (CroCo-b16) [34] is trained with a
cross-view completion objective using multi-view images,
where the task involves predicting a patch of an image from
another view. DUSt3R (DUSt3R-l16) [32] addresses the

3D reconstruction task for the generalized stereo case using
neural networks through direct regression. It takes multi-
view images as input and predicts dense 2D-3D point map-
pings for each view. LRM (LRM-b14) [15] is a large-scale
3D reconstruction network that takes images as input and
outputs 3D representations. The network is trained with di-
rect supervision using a large-scale 3D object repository [5].
Self-Supervised. MAE (MAE-b16) [13] and DINO
(DINO-b16) [3] are trained with masked and contrastive
self-supervised objective terms, respectively, without using
any human-provided labels. iBOT (iBOT-b16) [43] and DI-
NOv2 (DINOv2-b14) [22] combine masked and contrastive
objectives to train networks. All of these methods are based
on the transformer [7] architecture with the base configura-
tion.



References
[1] Adrien Bardes, Quentin Garrido, Jean Ponce, Xinlei Chen,

Michael Rabbat, Yann LeCun, Mido Assran, and Nicolas
Ballas. Revisiting feature prediction for learning visual rep-
resentations from video. TMLR, 2024. Featured Certifica-
tion. 4

[2] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka.
Adabins: Depth estimation using adaptive bins. In CVPR,
2021. 9

[3] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
ICCV, 2021. 8, 10

[4] Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. Single-
image depth perception in the wild. NeurIPS, 2016. 9

[5] Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo,
Oscar Michel, Aditya Kusupati, Alan Fan, Christian Laforte,
Vikram Voleti, Samir Yitzhafk Gadre, et al. Objaverse-xl: A
universe of 10m+ 3d objects. NeurIPS, 2024. 10

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 1, 9

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021. 10

[8] Mohamed El Banani, Amit Raj, Kevis-Kokitsi Maninis, Ab-
hishek Kar, Yuanzhen Li, Michael Rubinstein, Deqing Sun,
Leonidas Guibas, Justin Johnson, and Varun Jampani. Prob-
ing the 3d awareness of visual foundation models. In CVPR,
2024. 1, 4, 8, 9

[9] Alaaeldin El-Nouby, Michal Klein, Shuangfei Zhai,
Miguel Angel Bautista, Alexander Toshev, Vaishaal Shankar,
Joshua M Susskind, and Armand Joulin. Scalable pre-
training of large autoregressive image models. In ICML,
2024. 4

[10] Yongtao Ge, Guangkai Xu, Zhiyue Zhao, Libo Sun, Zheng
Huang, Yanlong Sun, Hao Chen, and Chunhua Shen.
Geobench: Benchmarking and analyzing monocular geome-
try estimation models. arXiv:2406.12671, 2024. 4

[11] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In CVPR, 2012. 7

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 9, 10

[13] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In CVPR, 2022. 10

[14] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv:1606.08415, 2016. 9

[15] Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou,
Difan Liu, Feng Liu, Kalyan Sunkavalli, Trung Bui, and Hao
Tan. Lrm: Large reconstruction model for single image to
3d. ICLR, 2024. 10

[16] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
LoRA: Low-rank adaptation of large language models. In
ICLR, 2022. 9

[17] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In CVPR, 2018. 9, 10

[18] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 8, 9

[19] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In ICCV, 2023. 7, 10

[20] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In CVPR, 2022. 10

[21] Wufei Ma, Guofeng Zhang, Qihao Liu, Guanning Zeng,
Adam Kortylewski, Yaoyao Liu, and Alan Yuille. Ima-
genet3d: Towards general-purpose object-level 3d under-
standing. In NeurIPS, 2024. 4

[22] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V.
Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby,
Mido Assran, Nicolas Ballas, Wojciech Galuba, Russell
Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Je-
gou, Julien Mairal, Patrick Labatut, Armand Joulin, and Pi-
otr Bojanowski. DINOv2: Learning robust visual features
without supervision. TMLR, 2024. 1, 10

[23] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In ICML, 2021. 10

[24] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. TPAMI, 2020. 10

[25] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-
sion transformers for dense prediction. In ICCV, 2021. 1

[26] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 10

[27] Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Worts-
man, et al. Laion-5b: An open large-scale dataset for training
next generation image-text models. NeurIPS, 2022. 10

[28] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In ECCV, 2012. 1

[29] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao.
Sun rgb-d: A rgb-d scene understanding benchmark suite. In
CVPR, 2015. 7

[30] Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii:
Revenge of the vit. In ECCV, 2022. 10

[31] Ruicheng Wang, Sicheng Xu, Cassie Dai, Jianfeng Xiang,
Yu Deng, Xin Tong, and Jiaolong Yang. Moge: Unlocking



accurate monocular geometry estimation for open-domain
images with optimal training supervision. arXiv preprint
arXiv:2410.19115, 2024. 7

[32] Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris
Chidlovskii, and Jerome Revaud. Dust3r: Geometric 3d vi-
sion made easy. In CVPR, 2024. 10

[33] Tianyu Wang, Xiaowei Hu, Qiong Wang, Pheng-Ann Heng,
and Chi-Wing Fu. Instance shadow detection. In CVPR,
2020. 7

[34] Philippe Weinzaepfel, Vincent Leroy, Thomas Lucas, Ro-
main Brégier, Yohann Cabon, Vaibhav Arora, Leonid Ants-
feld, Boris Chidlovskii, Gabriela Csurka, and Jérôme Re-
vaud. Croco: Self-supervised pre-training for 3d vision tasks
by cross-view completion. NeurIPS, 2022. 10

[35] Ross Wightman. Pytorch image models. https:
//github.com/rwightman/pytorch- image-
models, 2019. 9

[36] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim
Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam
Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien
Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transform-
ers: State-of-the-art natural language processing. In EMNLP
System Demonstrations, 2020. 9

[37] Scott Workman, Menghua Zhai, and Nathan Jacobs. Horizon
lines in the wild. In BMVC, 2016. 9

[38] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In CVPR, 2017. 9, 10

[39] Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi
Feng, and Hengshuang Zhao. Depth anything: Unleashing
the power of large-scale unlabeled data. In CVPR, 2024. 7

[40] Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiao-
gang Xu, Jiashi Feng, and Hengshuang Zhao. Depth any-
thing v2. NeurIPS, 2024. 10

[41] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and
Lucas Beyer. Sigmoid loss for language image pre-training.
In ICCV, 2023. 10

[42] Guanqi Zhan, Chuanxia Zheng, Weidi Xie, and Andrew Zis-
serman. A general protocol to probe large vision models for
3d physical understanding. In NeurIPS, 2024. 4

[43] Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang
Xie, Alan Yuille, and Tao Kong. ibot: Image bert pre-training
with online tokenizer. ICLR, 2022. 10

[44] Yan Zhu, Yuandong Tian, Dimitris Metaxas, and Piotr
Dollár. Semantic amodal segmentation. In CVPR, 2017. 4,
7

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	. Additional Results on DepthCues
	. Full Benchmark Results
	. Comparison Between Probes
	. Hyper-Parameter Search Results
	. Example Model Failure Cases
	. Learning Depth Cues
	. Monocular Depth Estimation Models

	. Dataset Construction Details
	. Additional Implementation Details
	. Probing Experiments
	. Evaluation Metrics
	. Fine-Tuning on DepthCues

	. Evaluated Models

