
Spectral State Space Model for
Rotation-Invariant Visual Representation Learning

Supplementary Material

A. Implementation Details
In this section, we give the pseudo-code for the Rotational
Feature Normalizer (RFN) and Spectral Traversal Scan
(STS) modules. This pseudo-code provides a concise sum-
mary of the key steps involved in our approach, offering a
high-level abstraction of the implementation. It is designed
to complement the detailed explanations in the main paper
and can serve as a reference for reproducing our results.

We begin with Algorithm 1, which outlines the steps for
implementing the RFN module. As discussed in the paper,
this module ensures a consistent representation of image
features across different orientations. This module comprises
four key steps: rotation, patchification, back-rotation, and a
max operation to aggregate features across all orientations.

Algorithm 1 Rotational Feature Normalizer Module

Require: Input image I ∈ RH×W×3; rotation angles: {θr |
r = 1, . . . , R}; stem module: Stem; patch size: p

Ensure: Aggregated feature map F .
1: Initialize: {θr} and {−θr}.
2: for r ∈ {1, . . . , R} do
3: Ir ← Rθr (I) ▷ Rotate image by θr
4: Fr ← Stem(Ir) ▷ Extract features
5: Funrotated

r ← R−θr (Fr) ▷ Back-rotate feature map
6: Append Funrotated

r to Fr.
7: end for
8: F ← maxr∈{1,...,R} Fr ▷ Max operation
9: Output: Aggregated feature map F .

Algorithm 2 represents the STS strategy for determin-
ing the traversal order of image patches based on spectral
decomposition. The process begins by constructing the ad-
jacency matrix W using the k-Nearest Neighbors (KNN)
algorithm, based on the Euclidean distances between image
patches. This matrix captures the relationships and similari-
ties between the patches. Subsequently, the degree matrix D
is computed, where each diagonal entry Dii represents the
sum of the weights of edges connected to node i. Using W
and D, the symmetric normalized Laplacian matrix Lsym is
calculated. Spectral decomposition is then applied to Lsym,
yielding the eigenvalues U and eigenvectors V . Finally,
the patches are reordered based on the spectral information,
resulting in the ordered sequence of patches P .

Algorithm 2 Spectral Traversal Scan Module

Require: patch feature f , number of neighbors k, and eigen-
vectors m

Ensure: Traversal sequence P
1: Step 1: Compute Weighted Adjacency Matrix
2: for each pair of patches (xi,xj) do
3: if i ∈ knnj OR j ∈ knni then
4: Wij = exp

(
−∥fi−fj∥2

2σ2

)
5: else
6: Wij = 0
7: end if
8: end for
9: Step 2: Compute Normalized Laplacian

10: Lsym = I−D− 1
2WD− 1

2

11: Step 3: Compute m Smallest Eigenvectors of Lsym

12: [U, V ] = eigenSolver(Lsym,m)

13: Step 4: Building Traversal Sequences

14: Sort U from smallest to largest.
15: Select the corresponding m eigenvalues from V .
16: for j = 1 to m do
17: Pj

1 = sorting f using increasing order of v(j)

18: Pj
2 = sorting f using decreasing order of v(j)

19: P =
[
P

(j)
1 , P

(j)
2

]j=1,...,m

20: end for
21: Output: Traversal sequence P .

B. Downsampling Strategy
Similar to VMamba, the architecture of our network consists
of four layers. Each layer contains a different number of
Spectral VMamba blocks. For example, in the tiny scale
configuration, we use the setup [2, 2, 5, 2], indicating that
the first layer has two Spectral VMamba blocks, the second
layer also has two blocks, the third layer has five blocks, and
the final layer contains two blocks. As previously mentioned,
the STS module is applied only once, in the first Spectral
VMamba block of the first layer. Additionally, downsam-
pling occurs at the end of each layer.

The eigenvectors are initially computed in the STS using
the original 14× 14 spatial features. However, after down-
sampling, the eigenvectors derived from the 14× 14 patches
no longer align with the downsampled patches in subsequent
layers, which requires careful handling to maintain consis-



tency. To resolve this alignment issue, we save the indices
used during the max pooling operation, which is responsible
for downsampling the spatial features. By leveraging the
saved indices, we extract the corresponding eigenvectors,
generating a new set that matches the shape of the downsam-
pled patches. This alignment ensures that the eigenvectors
and patches remain correctly paired, enabling us to order
the downsampled patches using eigenvectors of compatible
dimensions. We repeat this process at each subsequent layer
to maintain proper alignment throughout the network.

Swin DeiT VMamba Ours

A
ft

er
 t

ra
in
in
g

B
ef

o
re

 t
ra

in
in
g

Figure 1. Comparison of Effective Receptive Fields (ERF) Before
and After Training.

C. Visualization of Activation Maps
Effective Receptive Field (ERF) in Convolutional Neural
Networks (CNNs) refer to the region of the input image
that significantly influences the activation of a particular
neuron in a deeper layer of the network. Unlike the the-
oretical receptive field, which considers the full extent of
influence regardless of intensity, the ERF focuses on the
practical impact, often showing that only a central portion
of the theoretical receptive field has substantial influence.
Analyzing ERFs helps in refining network designs to ensure
that neurons capture relevant information efficiently, enhanc-
ing performance in tasks such as object detection and image
segmentation.

We conducted experiments to compare our model with
VMamba, focusing on the ERF of the central pixel before
and after training. Our results in Figure 1 indicate that our
model exhibits more global ERFs compared to VMamba.
Specifically, after training, the areas colored dark green,
which represent regions of high influence, are more exten-
sive in our method than in VMamba. This suggests that our
model is better at capturing broader contextual information
from the input image. The increased dark green regions in
our model demonstrate its enhanced capability to integrate
information over larger portions of the input, potentially
leading to improved performance in tasks requiring a com-
prehensive understanding of the image content.

0 15 30 45 60 75 90 10
5

12
0

13
5

15
0

16
5

18
0

19
5

21
0

22
5

24
0

25
5

27
0

28
5

30
0

31
5

33
0

34
5

36
0

Rotation Angles

50

55

60

65

70

75

80

85

To
p-

1 
Ac

cu
ra

cy
 (%

)

Ours
Ours with random rotation
VMamba

Figure 2. Effect of Random Rotation in RFN Module.

D. Training Dynamics
Figure 3 illustrates the comparison of training dynamics,
measured using the maximum accuracy with an Exponential
Moving Average, across three model scales: Tiny, Small, and
Base. Each plot represents the accuracy progression over 300
epochs for our proposed method and the VMamba model.
The plots represents our method demonstrates faster con-
vergence across all scales, achieving high accuracy earlier
in training compared to VMamba. The faster convergence
not only highlights the efficiency of our approach but also
reduces training time, making it highly suitable for practi-
cal applications where computational resources or time are
constrained.

E. RFN with Random Rotations
For the RFN module, we utilized four canonical angles:
0◦, 90◦, 180◦, 270◦, corresponding to quarter turns. Addi-
tionally, we tested the method with four random rotations
selected at each iteration from the ranges [0, 90], [91, 180],
[181, 270], and [271, 360]. Unlike quarter turns, most ran-
dom rotations necessitate interpolation. The results, pre-
sented in Figure 2, demonstrate that even with random ro-
tations, the model can achieve a high level of invariance.
However, a slight accuracy drop was observed when using
random rotations (83.06%) compared to the canonical quar-
ter turns (87.48%), which can be due to the loss of details
resulting from interpolation.

F. Downstream tasks
To demonstrate the versatility of our pre-trained model and
its applicability to tasks beyond classification, we extended
its use to semantic segmentation. Specifically, we fine-tuned
the model—originally pre-trained on the miniImageNet
dataset—to perform segmentation tasks on ADE20K dataset
[? ]. ADE20K includes 150 fine-grained semantic cate-
gories and comprises 20,000 training images, 2,000 valida-
tion images, and 3,000 test images. For optimization, we
use AdamW with a weight decay of 0.01 and a total batch



0 50 100 150 200 250 300
Epochs

0

20

40

60

80

M
ax

 A
cc

ur
ac

y 
EM

A 
(%

)

Tiny Scale

Ours-T
VMamba-T

0 50 100 150 200 250 300
Epochs

Small Scale

Ours-S
VMamba-S

0 50 100 150 200 250 300
Epochs

Base Scale

Ours-B
VMamba-B

Figure 3. Training Speed Comparison.

size of 2 per GPU. The training schedule features an ini-
tial learning rate of 6× 10−5, linear decay, a 1500-iteration
linear warmup, and a total of 160,000 iterations. We apply
standard data augmentations such as random horizontal flip-
ping, random scaling within a ratio range of 0.5 to 2.0, and
random photometric distortion.

Table 1 shows that our method outperforms VMamba
by +2.81 (tiny), +1.68 (small), and +1.49 (base) on single-
scale (SS) testing, and by +3.74 (tiny), +2.21 (small), and
+0.58 (base) on multi-scale testing. The backbone used for
the segmentation task was initialized from a classification
checkpoint which was trained on the mini-ImageNet dataset.
This explains the relatively lower range of segmentation
performance compared to other papers, which often use
classification models pre-trained on ImageNet-1k.

Method mIoU (SS) mIoU (MS)

VMamba-T 22.77 23.98
VMamba-S 25.84 27.13
VMamba-B 26.32 28.41

Ours-T 25.58 (+2.81) 27.72 (+3.74)

Ours-S 27.52 (+1.68) 29.34 (+2.21)

Ours-B 27.81 (+1.49) 28.99 (+0.58)

Table 1. Results of semantic segmentation on ADE20K. SS and
MS denote single-scale and multi-scale testing, respectively.


	. Implementation Details
	. Downsampling Strategy
	. Visualization of Activation Maps
	. Training Dynamics
	. RFN with Random Rotations
	. Downstream tasks

