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1. More Ablation Studies.
More Ablation of SE layers. To validate the necessity of multiple SE layers in FluxIR, we replaced them with a single
MLP, meaning a single full-rank MLP was used to control all Flux MM-DiT blocks simultaneously. As shown in Tab. 1,
the single MLP will strongly degrade the generation performance in all metric scores. Additionally, Fig. 1 illustrates that
using a single MLP limits the model’s generative capacity, resulting in lower-quality outputs. These findings highlight that
the optimal design for our Flux adapter is to provide dedicated control for each Flux MM-DiT block.

Table 1. Comparison between Single MLP design and our multiple SE layers design on the RealLQ250 dataset.

Control Layer CLIPIQA ↑ MUSIQ ↑ MANIQA ↑

FluxIR 0.5639 70.78 0.6314
Single MLP 0.5111 64.46 0.5547
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Figure 1. Visual results comparing the single MLP design and our multiple SE layers.

Ablation on multi-modality designs. In our proposed FluxIR, we introduce multi-modality controls on both the image
and text information with a learnable T5 [9] embedding θp and a learnable CLIP [8] embedding θy . To justify the effectiveness
of these designs, we evaluate the model variants by removing T5 embedding θy and CLIP embedding θy and text branch SE
layer SEp(·), respectively. Tab. 2 presents the quantitative results on RealLQ250 dataset. The results indicate that the text
branch SE layer is crucial for enhancing the performance of our FluxIR model. The trainable T5 embedding θp and CLIP
embedding θy show marginal differences from the baseline in evaluation metrics. As shown in Fig. 2, removing the text
branch SE layers SEp(·) leads to a significant decline in image restoration performance. The trainable T5 embedding θp
and CLIP embedding θy also contribute slight improvements in visual quality. The overall results demonstrate that the
multi-modality design of FluxIR effectively boosts performance in the image restoration task.



Table 2. Ablation results of multi-modality designs on the RealLQ250 dataset.

Multi-Modality CLIPIQA ↑ MUSIQ ↑ MANIQA ↑

Baseline 0.5639 70.78 0.6314
w/o θp,θy 0.5626 70.53 0.6308
w/o SEp(·) 0.5259 67.63 0.6266

LQ Input w/o Baselinew/o 

Figure 2. The visual comparisons of our multi-modality designs, i.e. text branch SE layers SEp(·) and trainable embeddings θp, θy . Please
zoom in for a better view.

2. Samples of Training dataset built by FluxGen
In this section, we present the dozens of samples produced by the FluxGen pipeline with the resolution of 1, 024×768. Fig. 3
illustrates our generated training dataset obtained with an empty prompt, and demonstrates that an empty prompt is sufficient
to produce diverse scene images with high resolution and aesthetic quality including cars, portraits, anime characters, animals,
plants, food, buildings, indoor settings, furniture, the sea, and sunsets. We found that some ground truth images from FluxGen
contain bokeh effects, which can occasionally cause localized blurriness in the restored results. However, based on subjective
evaluations across four test datasets, the impact is minimal and acceptable. Similar issues could also arise in real-world
datasets if not properly cleaned. Meanwhile, we show SDXL generated data in Fig. 4, which is also employed in the ablation
studies. Without carefully designed prompt, SDXL cannot produce high-quality images for image restoration tasks. Fig. 5
shows more visual comparisons to further justify the effectiveness of FluxGen on the choice of text-to-image model and IQA
selection. Furthermore, we generated 2,000 images from each of the five existing T2I models (PixelArt-Σ [4], Sana [11],
SDXL [7], Playground [6], and Flux.1-dev [5]) for evaluation. As shown in Tab. 3, the images generated by our FluxGen
pipeline achieved superior IQA scores.

Table 3. Comparisons with existing T2I generation methods.

Metric PixArt-Σ Sana SDXL Playground Flux.1-dev Ours

CLIPIQA ↑ 0.4981 0.5135 0.5821 0.5822 0.6763 0.7295
MUSIQ ↑ 64.93 66.75 70.49 70.35 75.02 75.37

MANIQA ↑ 0.5519 0.5944 0.5831 0.6666 0.6590 0.6962



Figure 3. Samples of generated images by FluxGen pipeline.



Figure 4. Samples generated by the SDXL.
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Figure 5. The visual comparisons of different FluxGen settings, where we study different T2I models, i.e. SDXL and Flux, and the usage
of IQA selections. Please zoom in for a better view.



3. More Visualization Comparison.
Here, we provide additional visual results on synthetic and real-world datasets compared with state-of-the-art methods. Fig. 6
presents the visual results on the DIV2K-Val [1] dataset. Fig. 7 presents the visual results on the RealSR [3] dataset. Fig. 8
presents the visual results on the DrealSR [10] dataset. Fig. 9 presents the visual results on the RealLQ250 [2] dataset. Our
FluxIR achieves the best performance in terms of generation quality, texture details, and aesthetic quality. Please zoom in for
a better view.



GT SUPIR DreamClear FluxIR (Ours)

LQ Input Real-ESRGAN SeeSR

GT SUPIR DreamClear FluxIR (Ours)

LQ Input Real-ESRGAN SeeSR

GT SUPIR DreamClear FluxIR (Ours)

LQ Input Real-ESRGAN SeeSR

Figure 6. Visual comparison with SOTAs on DIV2K-Val dataset.



GT SUPIR DreamClear FluxIR (Ours)

LQ Input Real-ESRGAN SeeSR

GT SUPIR DreamClear FluxIR (Ours)

LQ Input Real-ESRGAN SeeSR

GT SUPIR DreamClear FluxIR (Ours)

LQ Input Real-ESRGAN SeeSR

Figure 7. Visual comparison with SOTAs on RealSR dataset.
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Figure 8. Visual comparison with SOTAs on DrealSR dataset.
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Figure 9. Visual comparison with SOTAs on RealLQ250 dataset.
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