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1. Overview

In this supplementary material, we provide the implemen-
tation details in Sec. 2. In Sec. 4 we present the extensive
experiment results on various datasets. The detail informa-
tion of our dataset is shown in Sec. 3.

2. Implementation Details

Here we report the detailed settings and hyperparameters
used in MNE-SLAM to achieve multi-agent collaboration,
high-quality surface reconstruction, accurate camera track-
ing, and real-time performance. The truncation distance T
is set to 6 cm in our method. The coarse feature planes
is employed with a resolution of 24 cm. For fine feature
planes, we use a resolution of 6 cm. All feature planes have
32 channels, resulting in a 64-channel concatenated feature
input for the decoders. The decoders are two-layer MLPs
with 32 channels in the hidden layer. The dimension of the
geometric feature z is 15. ReLU activation function is used
for the hidden layer, and Tanh and Sigmoid are respectively
used for the output layers of TSDF and raw colors. We
use 16 bins for One-Blob encoding of each dimension. For
Replica [26] dataset, we sample N = 32 points for stratified
sampling and Nsurface = 8 points for importance sampling
on each ray. We use 200 iterations for first frame map-
ping. We perform 10 optimization iterations for mapping
and randomly select 4000 rays for each iteration. And for
ScanNet [6] dataset, we set N = 48 and Nsurface = 8. Also,
we perform 30 optimization iterations for both mapping and
tracking in ScanNet scenes. For the scenes in Apartment
dataset [42], we similarly set N = 48 and Nsurface = 8. For
this dataset, We perform 30 optimization iterations for map-
ping and tracking, and we randomly sample 5000 rays for
each iteration.

We employ the pre-trained weights from DROID-SLAM
[32] for tracking. We set Nlocal = 25, rlocal = 1 and τco =
25. For the loss coefficients for mapping, we set λfs = 5
, λsdfm = 200 ,λsdft = 10 , λd = 0.1 , and λc = 5 . We

*represents corresponding author.

use the RAFT [31] feature to select proporiate keyframe for
jointly optimizing the feature tri-planes, MLP decoders, and
camera poses of the selected keyframes. We add a keyframe
when the average flow is greater than or equal to 4 pixels.
We use Adam [14] for optimizing all learnable parameters
of our method. All experiments are conduct with a desktop
PC with NVIDIA RTX 3090 GPU.

Once all input frames are processed, and for evaluation
purposes, we build a TSDF volume for each scene and use
the marching cubes algorithm [19] to obtain 3D meshes. We
use inverse distance weight to fuse our local scene represen-
tation into the entire mesh.
Culling Method. In previous NeRF-based SLAM
method, all of them use an extra mesh culling step be-
fore evaluating the reconstructed mesh. iMAP [28] and
NICE-SLAM [42] adopt a frustum culling strategy which
removes the mesh vertices outside any of the camera
frustum. This culling strategy remove the artifacts outside
camera frustum but cannot remove artifacts inside camera
frustum. In NeuralRGBD [1] and ESLAM [12], they adopt
frustum+occlusion culling method. While this strategy
could effectively remove some artifacts, their overly
aggressive culling strategy results in many holes in the
culled mesh. Follow [33], We introduce a modification
to the culling strategy used for the quantitative evaluation
of the reconstruction accuracy, which leads to a fairer
comparison. We use the frustum+occlusion+virtul camera
culling method. This method simulates virtual camera
views that cover the occluded regions.
Evaluation Metrics. After mesh culling, we evaluate the
reconstructed mesh with a mixture of 3D (Accuracy [cm]↓,
Completion [cm]↓ and Completion Ratio↑) metrics. In Tab.
1, we present the 3D reconstruction metrics. We first uni-
formly sample two point clouds P and Q from both GT and
reconstructed meshes, with |P | = |Q| = 200000. Accuracy
metric is defined as the average distance between a point on
GT mesh to its nearest point on reconstructed mesh. The
Completion metric is defined as the average distance be-
tween a point on reconstructed mesh to its nearest point on
GT mesh. The Completion Ratio metric refers to the pro-
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Reconstruction Metrics Definition
Depth L1 [cm] 1

N

∑
(|di − d∗i |)/di

Accuracy [cm]
∑

p∈P (minq∈Q ∥p− q∥) /|P |
Completion [cm]

∑
q∈Q (minp∈P ∥p− q∥) /|Q|

Completion Ratio [< 5cm%]
∑

q∈Q (minp∈P ∥p− q∥ < 0.05) /|Q|
Completion Ratio [< 15cm%]

∑
q∈Q (minp∈P ∥p− q∥ < 0.15) /|Q|

Table 1. Definitions of scene reconstruction metrics used for eval-
uation of surface reconstruction quality.

Scene ID Sequence ID Scale Total Length Total duration

Indoor corridor Corridor1,2,3,4 >1000 m2 1482.75m 23487
Semi outdoor Semi outdoor1,2,3,4 >1500 m2 1549.60m 25691
Cross floor Cross floor1,2,3,4 >3000 m2 3078.69m 27832
Room Room1,2,3,4 35 m2 183.47m 4375

Table 2. Summary of scene ID, and the sequence ID in each scene.
We present the scales of different scenes, as well as the cumulative
lengths of the datasets and the total duration (number of frames).
For further details of our dataset, refer to the supplementary.

portion of the overall ground truth (GT) where the average
distance between a point on the reconstructed mesh and its
nearest point on the GT mesh is less than the threshold t.
Since the scale of indoor scenes is much larger than that
of Replica [26], ScanNet [6], and Apartment [26] datasets,
we use different completion ratio thresholds for different
datasets. For small-scale scenes, we set the threshold to 5
cm, while for large-scale scenes(INS), it is set to 15 cm.

For 2D metrics, we use depth L1[cm] ↓, PSNR↑, SSIM↑,
LPIPS↓ metrics. We render RGB and depth images along
with the trajectory of camera. The Depth L1 is defined as
the average L1 difference between rendered GT depth and
rendered depth.

For trajectory metrics, we use ATE RMSE (cm), me-
dian and mean. For the camera trajectories generated by
CCM-SLAM, we align them with the Ground Truth cam-
era trajectory using Sim(3) Umeyama alignment in the EVO
tool. As for the camera trajectories produced by other meth-
ods, we align them with the Ground Truth camera trajectory
by aligning the origin. Trajectory alignment is crucial for
proper drift and loop closure evaluation. To be specific, af-
ter aligning the initial poses, we calculate the Absolute Tra-
jectory Error (ATE) for each pose and compute the RMSE,
Mean, and Median values.

3. Dataset

We evaluate MNE-SLAM on a variety of scenes from dif-
ferent datasets.
• Replica Dataset [26]. 8 small room scenes (nearly
6.5m × 4.2m × 2.7m with 2000 images). We partition
the dataset into two subsets, each corresponding to the
trajectory of one agent, and ensure that there is overlap
between the two subsets. We use this dataset to evalu-
ate the reconstruction and localization accuracy in small-
scale environments.

Figure 1. Visualization of the robot platform in our dataset.

• ScanNet dataset [6]. Real-world scenes with long se-
quences (more than 5000 images) and large-scale indoor
scenarios. (nearly 7.5m × 6.6m × 3.5m). We also par-
tition the dataset into two subsets for two agents. We use
this dataset for real-world indoor environments.

• Apartment dataset from [26]. Multi-rooms scene (nearly
10.8m × 8.3m × 3.2m with 5000 images). We use this
dataset for multi-room environments. The Apartment
dataset is a multi-agent collaborative dataset with two dis-
tinct agents

• Our Indoor dataset for Neural SLAM systems (INS
dataset). This is the first real-world dataset for all kinds of
neural SLAM systems with high-accuracy ground-truth
for both camera trajectory and 3D reconstruction mesh.
We collected single-agent and multi-agent datasets from
various indoor environments, ranging from small room
scenes (nearly 35m2) to large-scale scenes (>1000 m2),
accumulating more than 100,000 camera frames. The
dataset has been partially open-source on Github.

Comparison with other datasets. In Tab. 3, we present
a comparison of our dataset with others, focusing on
key aspects such as scene types (indoor, outdoor), sen-
sor modalities (camera, depth, LiDAR, IMU), inclusion
of pose and 3D map ground truth, their acquisition meth-
ods, and a brief description. The upper part of the ta-
ble lists 3D reconstruction datasets, none of which provide
high-precision trajectory ground truth. The lower part lists
SLAM datasets, none of which include 3D map ground
truth. Currently, most existing neural SLAM methods typi-
cally use Replica [26], ScanNet [6], Apartment [26], TUM
RGB-D [27]. we find that current datasets are either vir-
tual, such as Replica [26] or only provide trajectory ground
truth without 3D ground truth, such as ScanNet [6], and
TUM dataset [27]. ScanNet++ [38] is a recently proposed
dataset that offers 3D ground truth. However, its poses are
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Dataset Year Scenes Senor Modalities GroundTruth GT Method DescriptionInd. Out. RGB Depth Lidar IMU Pose 3D Map Pose 3D Map

Tanks and Temples [15] ToG’17 ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ICP Laser Scan High-quality Object-centric Scenes

RealEstate10k [41] ToG’18 ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ COLMAP ✗
Video clips on YouTube captured

from a moving camera
NeRF-LLFF [21] SIG’19 ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ COLMAP ✗ Images of various indoor scenes and objects.
ACID [18] ICCV’21 ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ COLMAP ✗ A dataset of aerial landscape videos

Mip-NeRF 360 [2] CVPR’22 ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ COLMAP ✗
Outdoor and indoor scenes with
360-degree scene perspectives

LocalRF [20] CVPR’23 ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ COLMAP ✗ Large-scale outdoor dataset, Static hikes

TUM RGB-D [27] IROS’12 ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ Motion Capture ✗
Various indoor scenes for mapping

and localization

KITTI [9] IJRR’13 ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ GNSS/INS ✗
A city-scale dataset created for
autonomous driving research

ShapeNet [5] arXiv’15 ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ Simulation CAD
A richly-annotated, large-scale dataset

of 3D shapes

ScanNet [6] CVPR’17 ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ SLAM ✗
A richly-annotated multiple room scenes

with semantic label

Replica [26] arXiv’19 ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ Simulation Simulation
Highly photo-realistic 3D indoor scene

dataset at room scale

Nuscenes [3] CVPR’20 ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ GNSS/INS ✗
A city-scale dataset created for
autonomous driving research

Waymo [29] CVPR’20 ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ GNSS/INS ✗
A city-scale dataset created for
autonomous driving research

NTU VIRAL [22] IJRR’22 ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ TLS ✗ A dataset of aerial mapping and localization

ScanNet++ [37] ICCV’23 ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ SLAM Laser Scan
A large-scale dataset with high-quality and

geometry and color of indoor scenes.

SubT-MRS [40] CVPR’24 ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ GNSS/INS ✗
Mapping and localization under
diverse all-weather conditions

Ours CVPR’25 ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ MCTR Laser Scan
A large-scale indoor and outdoor dataset with a

widerange of sensing modalities and high-accuracy
groundtruth for both single-agent and multi-agent

Table 3. List of commonly used datasets for neural mapping and localization. We provide the first dataset that includes both high-precision
trajectory ground truth and 3D mesh ground truth. It covers indoor and outdoor scenes, incorporates multiple sensor modalities, and
includes both single-agent and multi-agent sequences.

Modality Hardware ROS Topic Type Description Rate

/d435i/depth/image raw 848×480 Depth
/d435i/infra1/image rect raw 1280×720 GreyscaleD435i
/d435i/infra2/image rect raw 1280×720 Greyscale
/d435i/color/image raw

sensor msgs/Image

1280×720 RGB

30HZ

/d455/depth/image raw 848×480 DepthD455
/d455/infra1/image rect raw 1280×720 Greyscale
/d455/infra2/image rect raw 1280×720 Greyscale

Camera

/d455/color/image raw
sensor msgs/Image

1280×720 RGB
30HZ

D435i /d435i/imu Bosch BMI055 400HZ
D455 /d435i/imu 400HZIMU
Livox Mid360 /livox/lidar/imu

sensor msgs/Imu
200HZ

Lidar Livox Mid360 /livox/lidar livox ros driver/CustomMsg
1 channel.
Points per channel: 9984 10HZ

Table 4. Summary of sensing modalities, hardware units, ROS topics, and the nominal rates on each platform in our dataset. All these data
have also been directly extracted from the rosbag and saved as individual files.

obtained through COLMAP, making them unsuitable as ac-
curate SLAM ground truth. In addition, Scannet++ is pri-
marily intended as a NeRF Training & Novel View Syn-
thesis dataset, as stated in their paper and SplaTAM [13].
ScanNet++ contains non-time-continuous trajectories with
numerous abrupt jumps and teleportations, which makes

it unsuitable for SLAM systems. To this end, we propose
a real-world dataset ranging from small-room scenarios to
large-scale corridors. Our dataset provides high-accuracy
and time-continuous trajectory and 3D mesh groudtruth,
which is suitable for all neural SLAM systems, such as
NeRF-based SLAM and 3DGS-based SLAM systems.



Scene ID Sequence ID Scale Total Length Total duration

Indoor corridor Corridor1,2,3,4 >1000 m2 1482.75m 23487
Semi outdoor Semi outdoor1,2,3,4 >1500 m2 1549.60m 25691
Cross floor Cross floor1,2,3,4 >3000 m2 3078.69m 27832
Room Room1,2,3,4 35 m2 183.47m 4375

Table 5. Summary of scene ID, and the sequence ID in each scene.
We present the scales of different scenes, as well as the cumulative
lengths of the datasets and the total duration (number of frames).

Sensor Suit and Robot Platform In Fig. 1, we present the
two robotic platforms used for dataset collection, along with
detailed sensor information, such as cameras and LiDAR.
In Tab. 4, we present the summary of sensing modalities,
handware units, ROS topics, and the nominal rates on each
platform. All these data have also been directly extracted
from the rosbag and saved as individual files.
Calibration The calibration process involves finding the
camera intrinsics and the extrinsics of all sensors. First, the
Kalibr toolbox is used to find the intrinsic parameters of the
D455 cameras. These intrinsic parameters are then used to
find the extrinsic of the camera setup on each D455 w.r.t.
each IMU available. Finally, we perform a pose-graph op-
timization over the graph to obtain the final extrinsic of all
sensors and summarize them in the calibration report.
3D Groundtruth Map 3D survey-grade mapping of the
campuses was done by using various terrestrial laser scan-
ners (TLS). In essence, TLS acquires point cloud data from
discrete, static locations by means of ground-based, high-
resolution 3D laser scanners. These individual scans are
then combined to producea complete 3D point cloud via co-
visible landmarks (both man-made and natural) and propri-
ety global scan matching software. point cloud data consists
of 3D point coordinates and may also include intensity or
RGB channels. Scanning each section took between several
days, requiring at least two field operators. Upon comple-
tion of the scanning process, all individual scans were reg-
istered in the manufacturer’s software. Registration of indi-
vidual scans in each of the sections was performed solely on
the basis of the artificial sphere targets recorded in the scans.
Cloud-to-cloud registration was then used to align the three
sections and create the final point cloud of the entire cam-
pus area. Target-based statistics showed a maximum dis-
tance error of less than 10 mm for all sphere pairings that
were used in the registration optimization process. Building
walls and corners were spot-checked for overlap of scans. A
total of 15 reference measurements were made with a total
station to verify the global accuracy of the point cloud. The
results showed a maximum distance error of less than 5 cm
over than entire length of the campus, which is below the
resolution of the point cloud. We get the 3D mesh use the
groundtruth point cloud with Poisson Surface Reconstruc-
tion and TSDF fusion. In Tab. 5, we provide information
about the collected sequences. Additionally, following the
tools provided in Imap [28], users can generate custom cam-

era trajectories along with corresponding RGB and Depth
images using the 3D ground truth.
Trajectory Groundtruth Many existing datasets face chal-
lenges related to the accuracy of ground truth estimates.
GNSS/INS, the most commonly used localization method
for automotive vehicles, often exhibits errors at the decime-
ter level. The Motion Capture system is primarily effec-
tive indoors or in low-light conditions. MoCap offer accu-
racy at the centimeter to millimeter level with clear line-of-
sight. Two commonly used methods for trajectory estima-
tion through point cloud matching are Normal Distributions
Transform (NDT) and Iterative Closest Point (ICP). These
methods often introduce errors in the range of a few decime-
ters. Simultaneous Localization and Mapping (SLAM) uses
onboard LIDAR sensors but may suffer from long-term drift
and is generally considered less accurate, with measurement
noise ranging from a few decimeters to several meters. The
proposed prior map continuous time registration (MCTR) is
estimated to provide centimeter-level accuracy without any
line-of-sight requirements, making it a promising choice for
creating large datasets with centimeter accuracy. To make
working with continuous-time trajectory ground truth easy,
we have created a python wrapper for the basalt, library
called CEVA (Continuous-time Evaluation), which can be
installed from the our github website. In many aspects,
CEVA exceeds the basalt library in its utilities. Some of the
improvements we have made are: CEVA is a Python mod-
ule, therefore, it can be easily imported into any Python pro-
gram or Jupyter notebooks instead of having to be included
and compiled like the C++ library basalt. Several Jupyter
notebooks are provided at scripts to showcase CEVA’s util-
ities.

4. Extensive Experiments

Due to space constraints, we present some extensive results
on supplementary. We first present the 2D rendering re-
sults (PSNR, SSIM, LPIPS) and depth estimation results
(Depth L1) on the Replica dataset [26] in Tab. 6, show-
ing the outcomes for Agent 1, Agent 2, and the overall
global sequence. Compared to other multi-agent meth-
ods, our approach achieves superior results. In Tab. 7,
we present the tracking results (RMSE, Median, Mean) for
each agent sequence in the Apartment dataset. It is evi-
dent that our method achieves better performance. We also
present global tracking performance on TUM RGB-D [27]
in Tab. 8. Our method achieves superior reconstruction ac-
curacy compared to other methods.
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Methods
Reconstruction

Agent 1 Agent 2 Global
Depth L1 (cm) PSNR ↑ SSIM ↑ LPIPS ↓ Depth L1 (cm) PSNR ↑ SSIM ↑ LPIPS ↓ Depth L1 (cm) PSNR ↑ SSIM ↑ LPIPS ↓

Single-Agent Methods
iMAP[28] 3.15 23.19 0.772 0.272 3.21 23.41 0.760 0.278 3.18 23.33 0.769 0.274
NICE-SLAM[42] 3.01 24.28 0.820 0.250 2.96 24.57 0.799 0.257 2.98 24.43 0.809 0.254
Vox-Fusion[36] 2.45 24.09 0.813 0.240 2.49 24.98 0.803 0.253 2.47 24.45 0.791 0.249
ESLAM[12] 1.16 28.36 0.920 0.244 1.21 27.83 0.927 0.248 1.19 28.06 0.923 0.246
Co-SLAM[33] 1.47 26.56 2.153 0.876 1.50 26.39 0.870 0.266 1.51 26.46 0.873 0.269
GO-SLAM[39] 3.01 23.88 0.820 0.298 2.96 23.17 0.799 0.317 3.38 23.53 0.801 0.305
Point-SLAM[23] 0.46 35.27 0.974 0.110 0.53 34.95 0.978 0.116 0.49 35.10 0.980 0.112
PLGSLAM[8] 1.14 28.36 0.919 0.242 1.20 27.83 0.925 0.248 1.17 28.16 0.922 0.244
Loopy-SLAM[17] 0.56 35.53 0.981 0.110 0.59 35.31 0.980 0.116 0.57 35.40 0.981 0.112
Multi-Agent Methods
CP-SLAM[10] 1.14 28.30 0.915 0.242 1.20 27.69 0.925 0.244 1.16 28.01 0.920 0.243
Ours 0.83 30.79 0.959 0.202 0.90 30.09 0.955 0.204 0.87 30.41 0.957 0.208

Table 6. Quantitative results of our proposed method with existing NeRF-based SLAM systems on the Replica dataset [26]. We evaluate
the reconstruction and localization performance of Agent1, Agent2, and global(global scene reconstruction and camera tracking). We
present the evaluation results of the rendering performance of different agents, as well as the results of the global map. The results are the
average of the scenes in the Replica dataset. Our method outperforms existing methods in RGB and depth rendering.

Methods Apartment-1 Apartment-2 Apartment-0
Agent 1 Agent 2 Global Agent 1 Agent 2 Global Agent 1 Agent 2 Global
RMSE[cm]/Mean[cm]/Median[cm] RMSE[cm]/Mean[cm]/Median[cm] RMSE[cm]/Mean[cm]/Median[cm]

Single-Agent Methods
ORB-SLAM3[4] 4.93/4.65/5.01 4.93/4.04/3.80 4.93/4.35/4.41 1.35/1.05/0.65 1.36/1.24/1.11 1.36/1.15/0.88 0.67/0.58/0.47 1.46/1.11/0.79 1.07/0.85/0.63
NICE-SLAM[42] 55.4/53.4/50.9 21.6/20.3/19.4 38.5/36.4/35.9 5.70/5.53/5.25 2.99/2.79/2.51 4.35/4.15/4.01 2.17/2.01/1.93 2.21/2.03/1.94 2.18/2.05/1.97
Co-SLAM[33] 2.86/2.74/2.58 3.51/3.40/3.24 3.19/2.95/2.77 1.44/1.32/1.27 1.64/1.45/1.39 1.54/1.44/1.38 0.83/0.74/0.67 0.78/0.73/0.0.67 0.83/0.75/0.68
ESLAM[12] 1.38/1.29/1.17 0.95/0.89/0.81 1.17/1.07/0.98 0.84/0.76/0.69 0.75/0.69/0.61 0.79/0.73/0.67 0.58/0.53/0.49 0.95/0.88/0.81 0.76/0.70/0.65
GO-SLAM[39] 1.45/1.38/1.30 1.33/1.21/1.16 1.27/1.12/1.01 0.49/0.45/0.43 0.78/0.74/0.70 0.62/0.58/0.53 0.47/0.44/0.41 0.56/0.52/0.49 0.53/0.50/0.48
Point-SLAM[23] 1.31/1.23/1.11 2.09/1.98/1.77 1.63/1.51/1.38 0.53/0.47/0.42 0.80/0.76/0.73 0.68/0.62/0.57 0.49/0.46/0.42 0.62/0.58/0.55 0.58/0.55/0.53
PLGSLAM[8] 1.33/1.26/1.18 1.06/0.99/0.91 1.13/1.06/0.98 0.82/0.77/0.70 0.73/0.68/0.65 0.79/0.74/0.71 0.56/0.53/0.51 0.93/0.87/0.83 0.74/0.69/0.66
Loopy-SLAM[17] 1.19/1.07/0.98 1.66/1.53/1.44 1.43/1.35/1.26 0.55/0.51/0.48 0.66/0.61/0.53 0.60/0.53/0.48 0.46/0.42/0.40 0.82/0.79/0.76 0.64/0.61/0.58
Multi-Agent Methods
CCM-SLAM[24] 2.12/1.94/1.74 9.31/6.36/5.57 5.71/4.15/3.66 0.51/0.45/0.40 0.74/0.70/0.68 0.62/0.59/0.57 -/-/- -/-/- -/-/-
Swarm-SLAM[16] 4.62/4.17/3.90 6.50/5.27/4.39 5.56/4.72/4.15 2.69/2.48/2.34 8.53/7.59/7.10 5.61/5.04/4.72 1.61/1.33/1.09 1.98/1.48/0.94 1.80/1.41/1.02
CP-SLAM[10] 6.21/5.56/5.27 5.67/5.37/4.67 5.73/5.26/4.77 1.45/1.43/1.39 2.48/2.32/2.27 1.85/1.68/1.73 0.62/0.47/0.30 1.28/1.17/1.37 0.91/0.78/0.80
Ours 1.21/1.09/1.07 0.99/0.87/0.93 1.02/1.01/0.99 0.43/0.41/0.40 0.74/0.72/0.70 0.59/0.58/0.55 0.43/0.41/0.40 0.53/0.50/0.49 0.48/0.46/0.45

Table 7. Two-agent tracking performance in Replica dataset [26]. ATE RMSE(↓), Mean(↓) and Median(↓) (cm) are used as evaluation
metrics. Following the setting of [10], we quantitatively evaluated respective trajectories (Agent 1 and Agent 2) and global results of the
two agents. ”-” indicates invalid results due to the failure of CCM-SLAM. Our method achieve SOTA performance compared with other
existing methods.
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Methods Loop Closure fr1/desk fr1/desk2 fr1/room fr2/xyz fr3/office Avg.
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