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Supplementary Material

I. In-Plane (Axis) Rotation Number T . In the main paper,
for each template Ii, we generate T rotations around the
camera’s principal axis, each rotation defined by an angle
θk = 2πk

T , where k = 0, . . . , T − 1, covering the full 360◦

range. Here, we study the effect of axis rotation number T
in Fig. 1. We observe that increasing T improves AR on the
LM-O dataset. T = 5 achieves a good trade-off between
performance and computational cost, with T = 7 offering
minimal additional improvement.
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Figure 1. The Effect of Axis Rotation Number T . We show
the impact of T on the average recall (AR) for LM-O [1]. We
observe that increasing T improves AR, with T = 5 offering a
good balance between performance and computational cost. While
T = 7 achieves slightly higher AR, the improvement over T = 5
is minimal, making T = 5 a practical choice

II. Template Number Comparison. Table 1 compares the
number of templates required by different methods. Found-
Pose [6] uses 600 templates, MegaPose [4] uses 576, and
GigaPose [5] reduces this to 162. In contrast, Pos3R (ours)
achieves competitive performance with only 40 templates,
demonstrating its efficiency in significantly reducing tem-
plate requirements while maintaining effectiveness.

# Method Template Number

1 FoundPose [6] 600
2 MegaPose [4] 576
3 GigaPose [5] 162
4 Pos3R (ours) 40

Table 1. Comparison of template numbers used by different
methods. FoundPose [6] uses 600 templates, MegaPose [4] uses
576 templates, and GigaPose [5] uses 162 templates, while Pos3R
(ours) achieves competitive results with only 40 templates.

III. Experimental Parameter Settings. Unless stated oth-
erwise, all experiments are conducted using a single

NVIDIA A100 GPU. The default subsample size of 8 is
used for FastNN’s subsample of MASt3R. Our method
is entirely training-free, with no task-specific training in-
volved. The size of templates and test segments is set to
320 × 320 pixels. For each test segment, the pose is es-
timated using PnP-RANSAC, which runs up to 400 itera-
tions with an inlier threshold of 10 pixels. All masks are
loaded from default CNOS mask files provided for the BOP
2023 benchmark [3]. We use the default hyperparameter of
RoMa [2] for the component analysis.

References
[1] Eric Brachmann, Alexander Krull, Frank Michel, Stefan

Gumhold, Jamie Shotton, and Carsten Rother. Learning 6d
object pose estimation using 3d object coordinates. In Com-
puter Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part II 13,
pages 536–551. Springer, 2014. 1

[2] Johan Edstedt, Qiyu Sun, Georg Bökman, Mårten
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