
Supplementary Material of Words or Vision: Do Vision-Language Models Have
Blind Faith in Text?

A. Details of Theoretical Analysis
To provide a rigorous foundation for our theoretical analysis, we begin by formally outlining the training process of a vision-
language model. For clarity and conciseness, the following is a streamlined adaptation of the standard training process. A
VLM is a function fvlm : X → Y , where X := Rτ×d denotes the set of sequences of d-dimensional feature vector (that
can represent text or image) with length τ , and Y denotes the output space of the model. Without loss of generalization, we
assume Y := R for simplicity.

A.1. Structure
Following Edelman et al. [2], we consider the form of transformer structure of fvlm with L layers as follows. The parameters
of i’s layer is denoted by W (i) :=
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where X ∈ Rτ×d is the model’s input, and Πnorm is the layer normalization function, σ is a non-linear activation function,
and

f (Z; {WQ,WK ,WV }) := Softmax
(
ZWQ (ZWK)

⊤
)
ZWV

with Softmax(·) being the standard softmax function. Finally, the scalar output is defined as

fvlm(X;W 1:L, w) := w⊤[g
(L+1)
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)
]τ , for some w ∈ Rd, (1)

where [G]τ ∈ Rd denotes the τ -th row of the matrix G ∈ Rτ×d. Furthermore, we have the following assumptions within the
structure.
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Assumption A.3. The activation function σ(·) is Lσ-Lipschitz in the l2 norm.

Assumption A.4. The loss function l(·) is b-bounded and is Lloss-Lipschitz in its arguments.

A.2. Training process
Let X txt = [(Xtxt

1 , ytxt1 ), · · · , (Xtxt
N , ytxtN )] be a pure-text training set with size N , where Xtxt

i ∈ Rτ×d is a sequence of the
text feature vector of length τ , and ytxti = f txt

gt (Xtxt
i ) ∈ R is its ground-truth label with f txt

gt (·) denoted as the ground-true
function for the pure text data. We assume Xtxt

1 , · · · , Xtxt
N are i.i.d. sampled from a unknown distribution Dtxt.

In addition, let Xmul = [(Xmul
1 , ymul

1 ), · · · , (Xmul
N , ymul

M )] be a multi-modal training set with size M , where Xmulti
i ∈

Rτ×d is a sequence of multi-modal (e.g., text and image) feature vector of length τ , and ymul
i = fmul

gt (Xmulti
i ) ∈ R is
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its ground-truth label with fmul
gt (·) denoted as the ground-true function for the multi-modal data. Similarly, we assume

Xmul
1 , · · · , Xmul

N are i.i.d. sampled from a unknown distribution Dmul.
Furthermore, let l : R×R → be a loss function. Then, we define the parameter θ̂ERM ∈ Θ according to the ERM learning

process of the multi-modal paradigm as
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Our main theoretical result is given in the next subsection.

A.3. Results
We now provide the formal statement of Theorem A.5.

Theorem A.5. Let Θ be the set of parameters that satisfies Assumption A.1, A.2, A.3 and A.4. For any θ ∈ Θ, let fvlm(·; θ)
be a VLM as is defined in equation 1 with L layers. With probability at least 1− δ,
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where
Cvlm ≲ (C2Lσ)

O(L) ·B2
XB2

wC
2
2,1 · log(dτ(N +M))

is the constant related to the covering number of the function class of {fvlm(·; θ) | θ ∈ Θ}, and the notation ≲ hides global
constants and logarithmic factors on quantities besides N,M and τ .

A.4. Proof of Theorem A.5
Before we formally prove Theorem A.5, we first present some useful Lemmas from previous works. For any real-valued
function class F , we let N∞
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at least 1− δ, simultaneously for all f ∈ F ,∣∣∣∣∣ E

x∼D
[l(f(x), ggt(x))]−

1

m

m∑
i=1

l
(
f(x(i)), ggt(x

(i))
)∣∣∣∣∣ ≤ 4cLloss

√
CF

m

(
1 + log

(
A
√
m/CF

))
+ 2b

√
log(1/δ)

2m

for some constant c > 0.



Lemma A.7. (Adapted from Edelman et al. [2, Theorem A.17]) Suppose ∀i ∈ [m],
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Note the fact that max{N,M} ≤ N + M ≤ 2max{N,M} . Finally, by Lemma A.7 and hiding global constants and
logarithmic factors on quantities besides N,M and τ , we get with probability 1− δ,
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This completes the proof of Theorem A.5



B. Experimental Setup
This section outlines the experimental setup, including examples of constructed textual variations, details of the brand detec-
tion task [4], and the evaluation protocols employed. We present examples illustrating the three types of textual variations
alongside the corresponding image, original question, and ground-truth answers to provide clarity and context.

B.1. Examples
This subsection provides examples of matching, corrupted, and irrelevant texts across different datasets in Tables 1 to 4.

Q: What green veggie is on the
pizza GT: pepper

Match: The pizza has green pepper slices on one of its sections.

Corruption: The pizza has green broccoli florets on one of its sections.

Irrelevance:

Beckham obtained his early education at Roseland Academy in Bard-
stown. In 1881 he served as a page in the Kentucky House of Represen-
tatives at the age of 12. Later, he enrolled at Central University ( now
Eastern Kentucky University ) in Richmond, Kentucky but was forced
to quit school at the age of 17 to support his widowed mother. Two
years later, he became principal of Bardstown public schools, serving
from 1888 to 1893. Concurrently, he studied law at the University of
Kentucky, where he earned his law degree in 1889. He was admitted to
the bar and commenced practice in Bardstown in 1893. He also served
as president of the Young Democrats ’ Club of Nelson County .

Table 1. Illustration of matching, corrupted, and irrelevant information in a sample from VQAv2.

B.2. Brand Recognition
Brand recognition from a webpage is a crucial step in detecting phishing websites. Phishing webpages aim to deceive users
by imitating the appearance of legitimate websites associated with well-known brands. Accurately identifying the brand
linked to a webpage allows for a comparison between the input webpage’s URL and the official URL of the recognized
brand, aiding in the detection of phishing attempts.

In our experiments, we utilized phishing webpage samples from the TR-OP dataset [4]. Each sample comprises a screen-
shot and its corresponding HTML code. Depending on the scenario, the HTML content either reflects the target brand
displayed in the screenshot or is altered to assess the model’s robustness. We evaluated three specific scenarios:
• Matching: The original HTML includes information about the target brand visible in the screenshot. This scenario pro-

vides the model with consistent inputs, helping it correctly identify the brand.
• Corruption: In this case, we inserted a fabricated brand name (e.g., “The official webpage of MobrisPremier”) into the

HTML to mislead the model into recognizing a non-existent brand. Since no corresponding URL exists for such brands,
phishing detection becomes infeasible for these inputs.

• Irrelevance: The HTML content was replaced with randomly selected sentences from the Wiki dataset [], ensuring that
the new content was unrelated to any brand. This scenario tests the model’s ability to handle inputs with no brand-specific
information.
To standardize the inputs, we preprocessed the HTML content by removing all tags and truncating it to a maximum length

of 5,000 characters.



Q: What time is ‘question and answers
‘session? GT: 12:25 to 12:58 p.m.

Match: The ’Questions and Answers’ session is scheduled from 12:25 to 12:58 p.m.

Corruption: The ’Questions and Answers’ session is scheduled from 2:00 to 5:00 p.m.

Irrelevance:

The Americans knew of the approach of the Japanese forces from reports from native
scouts and their own patrols , but did not know exactly where or when they would
attack . The ridge around which Edson deployed his men consisted of three distinct
hillocks . At the southern tip and surrounded on three sides by thick jungle was Hill
80 ( so named because it rose 80 ft ( 24 m ) above sea level ) . Six hundred yards
north was Hill 123 ( 123 ft ( 37 m ) high ) , the dominant feature on the ridge . The
northernmost hillock was unnamed and about 60 ft ( 18 m ) high . Edson placed the
five companies from the Raider battalion on the west side of the ridge and the three
Parachute battalion companies on the east side , holding positions in depth from Hill
80 back to Hill 123 . Two of the five Raider companies , B̈ änd C̈ ,̈ held a line between
the ridge , a small , swampy lagoon , and the Lunga River . Machine @-@ gun
teams from Ë C̈ompany , the heavy weapons company , were scattered throughout the
defenses . Edson placed his command post on Hill 123 .

Table 2. Illustration of matching, corrupted, and irrelevant information in a sample from DocVQA.

B.3. Evaluation
We follow the evaluation protocol specified for each dataset. To reduce cases where models generate open-ended answers,
which complicates evaluation, we adopt a similar approach to the evaluation setting in LLaVA-1.5 [5]. For certain datasets,
we append additional formatting prompts after the question, as shown in Table 5.

For MathVista [6], which uses GPT-based evaluation, we do not include formatting prompts. Instead, GPT is employed
directly to evaluate the outputs.

C. Experimental Results
To rigorously assess the performance impact of varying textual contexts, we have documented the comprehensive results
across four distinct datasets. These results are quantified using several metrics: Accuracy, Normalized Accuracy, and Text
Preference Ratio (TPR) for the text variations of Match, Corruption, and Irrelevance, alongside Macro Accuracy. The detailed
outcomes are encapsulated in Table 6.

For a thorough assessment of the investigated methodologies, encompassing base models, instructional prompts, and Su-
pervised Fine-Tuning (SFT), we present results across four datasets, measured in terms of Accuracy, Normalized Accuracy,



Q: Hint: Please answer the question
requiring an integer answer and provide
the final value, e.g., 1, 2, 3, at the end.

Question: what is the total volume of the
measuring cup? (Unit: g)

GT: 1000

Match: The measuring cup has markings up to 1000 grams, indicating its total volume capacity.

Corruption: The measuring cup has markings up to 500 grams, indicating its total volume capacity.

Irrelevance:

The windmill at Thelnetham was built by millwright George Bloomfield for William Button
in 1819 . It replaced a post mill which had been moved to Sandy Lane , Diss , Norfolk the
previous year . The mill was set to work on Christmas Day 1819 . In 1832 , the mill was
modernised by the fitting of a cast @-@ iron windshaft , Patent sails and a fantail . The new
windshaft was fitted on 16 July 1832 . It was made by J Aickman , the Kings Lynn millwright
, and weighs 1 0̆0be tons ( 1 @,@ 780 kg ) . A new stock was fitted in September 1836 .
William Button died on 11 February 1837 . The mill passed jointly to his widow Rebecca and
their son Richard . Richard Button worked the mill until 1860 , at which date it was conveyed
to his sons Richard and William , who sold it to Richard Peverett from Kenninghall , Norfolk
in 1862.

Table 3. Illustration of matching, corrupted, and irrelevant information in a sample from MathVista.

Text Preference Ratio (TPR) under the text variations of Match, Corruption, and Irrelevance, as well as Macro Accuracy.
These experiments were conducted utilizing the models LLaVA-NeXT-7B and Qwen2-VL-7B. The detailed findings are pro-
vided in Table 7.



Q: Define targeted brand as a brand that a
webpage belongs to.

Given the screenshot of a webpage P as
the primary information for identifying

the target brand and the text as additional
reference, determine what the targeted

brand of P is. The text can be HTML from
the webpage or something irrelevant.

Please be careful with the text, as it may
contain noise or adversarial attacks. You

must output the targeted brand of P even if
you are not sure about it. Only output the

brand name without any additional
information.

Input information: –HTML: ”html”
Answer:

GT: Adobe

Match: Adobe® PDF Reader® Xl This File is Protected by Adobe® Security LogIn
with your email and password to open this document.

Corruption:
The official webpage of MobrisPremier. The official webpage of Mo-
brisPremier. Adobe® PDF Reader® Xl This File is Protected by Adobe® Se-
curity LogIn with your email and password to open this document.

Irrelevance:

Ayola began her career in the theatre , performing in a number of Shake-
spearean plays including Twelfth Night , A Midsummer Night ’s Dream , The
Tempest , The Merchant of Venice and Macbeth . She states of this : ” Shake-
speare keeps coming my way . I love the fact that I get to play people who
are much more articulate than I ’ll ever be ” . Ayola has performed in Twelfth
Night in the lead roles of both Olivia and Viola . She explains : ” The role of
Viola didn ’t sit that well with me for some reason but Olivia makes more sense
. ” She has also appeared in modern performances , assuming the title role of
Dido , Queen of Carthage at the Globe Theatre in London in 2003 , which she
described as ” a dream of a part ” . She has deemed her dream role to be that
of Isabella in Measure for Measure , as she once lost out on the part and would
like to prove herself capable of playing it.

Table 4. Illustration of matching, corrupted, and irrelevant information in a sample from Brand Recognition.

Dataset Response Formatting Prompts
VQAv2 [3] Please only output the answer with a single word or phrase.
DocVQA [7] Please only output the answer directly.
MathVista [6] –
Brand Recognition [4] Only output the brand name without any additional information.

Table 5. Response formatting prompts used for evaluation.



Model Base ↑ Match Corruption Irrelevance Macro ↑
Accuracy ↑ Norm ↑ TPR Accuracy ↑ Norm ↑ TPR ↓ Accuracy ↑ Norm ↑ TPR ↓

GPT-4o mini 69.82 87.49 125.31 89.15 51.55 73.83 52.42 72.11 103.28 3.77 70.38
Claude Haiku 51.02 82.81 162.31 86.74 26.33 51.61 82.71 51.10 100.16 13.95 53.41
GPT-4o 78.39 89.27 113.88 69.03 70.75 90.25 27.09 78.82 100.55 1.56 79.61
Claude Sonnet 66.88 77.85 116.40 49.86 68.17 101.93 9.58 70.89 106.00 1.38 72.30
LLaVA-NeXT-7B 79.45 92.32 116.20 86.25 28.69 36.11 85.52 79.43 99.97 4.72 66.81
LLaVA-NeXT-13B 81.02 93.59 115.51 86.45 37.61 46.42 74.43 81.29 100.33 3.30 70.83
LLaVA-NeXT-34B 82.96 93.07 112.19 79.10 42.87 51.68 67.56 79.64 95.99 2.70 71.86
Phi3.5 75.65 91.23 120.59 79.51 35.23 46.57 74.05 74.87 98.97 2.25 67.11
Molmo-7B-D 76.33 88.57 116.04 88.32 49.29 64.57 59.40 76.50 100.22 9.36 71.45
Qwen2-VL-7B 85.51 92.76 108.48 13.17 50.79 59.40 29.22 83.70 97.88 1.28 75.75

(a) VQAv2
Model Base ↑ Match Corruption Irrelevance Macro ↑

Accuracy ↑ Norm ↑ TPR Accuracy ↑ Norm ↑ TPR ↓ Accuracy ↑ Norm ↑ TPR ↓
GPT-4o mini 69.40 81.40 117.26 82.74 38.20 55.04 52.07 67.20 96.83 0.80 62.27
Claude Haiku 69.53 83.45 120.06 68.77 39.35 56.61 47.67 57.82 83.16 1.18 60.21
GPT-4o 85.00 90.40 106.35 64.75 73.60 86.59 17.96 86.40 101.65 0.23 83.47
Claude Sonnet 87.00 91.53 105.15 41.18 84.60 97.24 3.21 87.41 100.47 0.00 87.85
LLaVA-NeXT-7B 53.60 90.80 169.40 86.92 10.00 18.66 87.77 52.40 97.76 0.71 51.07
LLaVA-NeXT-13B 57.70 90.40 156.68 87.82 11.00 19.06 86.84 55.80 96.68 0.65 52.40
LLaVA-NeXT-34B 64.00 87.80 137.19 84.62 15.10 23.59 82.69 62.70 97.97 0.13 55.20
Phi3.5 78.20 92.40 118.16 58.01 50.50 64.60 40.51 77.00 98.46 0.00 73.30
Molmo-7B-D 74.00 90.30 122.30 87.54 38.40 51.89 57.20 74.70 100.95 0.37 67.80
Qwen2-VL-7B 90.50 95.10 105.08 51.97 57.50 63.64 37.41 89.90 99.34 0.22 80.83

(b) DocVQA
Model Base ↑ Match Corruption Irrelevance Macro ↑

Accuracy ↑ Norm ↑ TPR Accuracy ↑ Norm ↑ TPR ↓ Accuracy ↑ Norm ↑ TPR ↓
GPT-4o mini 52.30 73.80 141.11 88.82 23.90 45.70 80.28 44.40 84.89 20.14 47.37
Claude Haiku 41.00 80.30 195.85 88.04 19.80 48.29 77.42 39.70 96.83 23.33 46.60
GPT-4o 58.90 73.70 125.04 85.20 41.20 69.95 48.98 53.10 90.15 13.55 56.00
Claude Sonnet 56.30 68.10 120.95 57.69 49.30 87.57 29.14 55.20 98.05 7.96 57.53
LLaVA-NeXT-7B 35.80 74.80 273.62 88.72 19.70 54.97 84.19 28.40 104.02 38.22 40.97
LLaVA-NeXT-13B 36.20 76.20 257.43 88.98 20.60 56.89 80.83 32.60 96.28 37.18 43.13
LLaVA-NeXT-34B 34.00 68.00 200.00 73.59 21.70 61.98 67.64 32.10 94.41 20.40 40.60
Phi3.5 43.10 73.70 171.21 84.82 22.20 51.47 80.20 41.10 95.36 13.99 45.67
Molmo-7B-D 44.90 68.50 152.57 82.46 32.90 73.27 60.63 45.30 100.89 27.49 48.90
Qwen2-VL-7B 55.40 77.80 140.43 84.50 28.90 52.18 70.23 54.90 99.10 8.44 53.87

(c) MathVista
Model Base ↑ Match Corruption Irrelevance Macro ↑

Accuracy ↑ Norm ↑ TPR Accuracy ↑ Norm ↑ TPR ↓ Accuracy ↑ Norm ↑ TPR ↓
GPT-4o mini 88.84 86.88 97.80 30.43 84.80 95.44 7.48 88.48 99.60 0.08 86.72
Claude Haiku 84.40 83.40 98.81 26.02 78.72 93.27 6.44 82.28 97.49 0.00 81.47
GPT-4o 88.68 89.48 100.90 14.64 89.76 101.22 0.83 89.16 100.54 0.04 89.47
Claude Sonnet 90.20 90.56 100.40 17.03 90.24 100.04 0.96 90.24 100.04 0.00 90.35
LLaVA-NeXT-7B 78.60 77.56 98.67 82.39 62.52 79.54 64.74 16.28 20.72 70.45 52.12
LLaVA-NeXT-13B 83.00 79.00 95.18 77.04 33.96 40.92 72.97 11.72 14.12 79.61 41.56
LLaVA-NeXT-34B 66.28 68.28 102.99 31.60 53.52 80.77 23.49 52.84 79.69 10.65 58.21
Phi3.5 84.40 83.84 99.33 31.39 60.68 71.90 50.54 16.44 19.48 79.17 53.65
Molmo-7B-D 87.44 87.32 99.86 37.38 41.44 47.39 60.40 60.88 69.63 27.36 63.21
Qwen2-VL-7B 89.68 88.92 99.15 17.22 86.48 96.43 2.99 70.16 78.20 15.73 81.85

(d) Brand Detection

Table 6. Performance in Accuracy, Normalized Accuracy (Norm) and Text Preference Ratio (TPR) across four datasets under three text
variations: Match, Corruption, and Irrelevance. The Macro column represents the average of Match, Corruption, and Irrelevance Accuracy
for each model, calculated to be comparable to the Base accuracy.



Model Base ↑ Match Corruption Irrelevance Macro ↑
Accuracy ↑ Norm ↑ TPR Accuracy ↑ Norm ↑ TPR Accuracy ↑ Norm ↑ TPR

LLaVA-NeXT-7B 79.45 92.32 116.20 86.25 28.69 36.11 85.52 79.43 99.97 4.72 66.81
Instruction 79.45 92.25 116.12 86.46 34.27 43.13 78.50 78.15 98.36 6.69 68.22
SFT 77.48 87.56 113.01 59.73 71.25 91.94 20.00 77.32 99.79 4.06 78.71
Qwen2-VL-7B 85.51 92.76 108.48 13.17 50.79 59.40 29.22 83.70 97.88 1.28 75.75
Instruction 85.51 92.62 108.32 14.42 54.78 64.07 27.01 82.82 96.85 1.18 76.74
SFT 84.18 87.01 103.36 36.65 82.72 98.26 6.69 84.00 99.79 2.59 84.58

(a) VQAv2
Model Base ↑ Match Corruption Irrelevance Macro ↑

Accuracy ↑ Norm ↑ TPR Accuracy ↑ Norm ↑ TPR Accuracy ↑ Norm ↑ TPR
LLaVA-NeXT-7B 53.60 90.80 169.40 86.92 10.00 18.66 87.77 52.40 97.76 0.71 51.07
Instruction 53.60 88.60 165.30 84.01 9.80 18.28 87.38 49.40 92.16 1.54 49.27
SFT 52.20 75.50 144.63 56.21 42.80 81.99 28.19 50.20 96.17 0.14 56.17
Qwen2-VL-7B 90.50 95.10 105.08 51.97 57.50 63.64 37.41 89.90 99.34 0.22 80.83
Instruction 90.50 94.70 104.64 51.46 57.80 63.88 37.00 89.80 99.23 0.11 80.77
SFT 90.30 93.10 103.10 26.06 84.30 93.35 6.32 89.50 99.11 0.11 88.97

(b) DocVQA
Model Base ↑ Match Corruption Irrelevance Macro ↑

Accuracy ↑ Norm ↑ TPR Accuracy ↑ Norm ↑ TPR Accuracy ↑ Norm ↑ TPR
LLaVA-NeXT-7B 35.80 74.80 208.94 84.32 19.70 55.03 84.19 28.40 79.33 34.57 41.03
Instruction 35.80 70.60 197.77 84.68 21.80 60.89 81.85 31.20 87.15 32.94 41.20
SFT 35.30 68.70 194.90 77.42 23.50 66.57 63.75 32.70 92.64 10.76 41.63
Qwen2-VL-7B 55.40 77.80 140.43 84.50 28.90 52.17 70.23 54.90 99.10 8.44 53.87
Instruction 55.40 78.10 140.79 86.50 29.30 52.88 70.59 54.90 99.10 8.11 54.10
SFT 58.50 74.00 126.50 78.31 40.30 68.89 49.16 57.20 97.78 5.65 57.17

(c) MathVista
Model Base ↑ Match Corruption Irrelevance Macro ↑

Accuracy ↑ Norm ↑ TPR Accuracy ↑ Norm ↑ TPR Accuracy ↑ Norm ↑ TPR
LLaVA-NeXT-7B 78.60 77.56 98.67 68.30 62.52 79.54 59.17 16.28 20.72 89.14 46.44
Instruction 78.60 78.36 99.70 66.57 54.84 69.77 59.63 8.88 11.30 85.26 47.36
SFT 81.36 78.32 96.26 37.18 69.48 85.39 17.92 69.08 84.92 9.08 72.29
Qwen2-VL-7B 89.68 88.92 99.15 17.22 86.48 96.43 2.99 70.16 78.20 15.73 81.85
Instruction 89.68 88.52 98.71 17.50 87.12 97.15 1.94 77.80 86.77 9.34 84.48
SFT 89.44 90.08 100.72 20.32 88.76 99.24 1.43 87.40 97.72 0.71 88.75

(d) Brand Detection

Table 7. Performance of investigated solutions in Accuracy, Normalized Accuracy (Norm) and Text Preference Ratio (TPR) across four
datasets under three text variations: Match, Corruption, and Irrelevance. The Macro column represents the average of Match, Corruption,
and Irrelevance Accuracy for each model, calculated to be comparable to the Base accuracy.
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