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8. Implementation Details

In this section, we describe the specifics of our experiments.

Quantitative evaluation on downstream tasks: For
Section 5.1, we conducted a linear probe for each model
using a ridge classifier. We swept over different reg-
ularization weights and selected the optimal one using
cross-validation on the training set. For our RANGE model,
we used τ = 1/15 for all tasks. This value was selected
by using the cross-validation scores on only Biome and
Temperature data. For RANGE+, we used τ1 = 1/12, and
τ2 = 1/40. These were selected using the same procedure
as we described for RANGE. For all the experiments with
RANGE+, we set β = 0.5, giving equal weight to the
semantic and spatial similarity of visual features.

Evaluation on iNaturalist data: For Section 5.2, we
conducted a linear probe for each model using the train-
ing split of iNaturalist data. However, following prior
work [33], we used the “assume negative” loss function,
proposed by Cole et al [5]. For RANGE and RANGE+,
we use the same hyperparameters as we used for our
experiments in Section 5.1. We used the pre-trained “full
high-resolution” model by Mac Aodha et al. [25] to get the
image-only predictions P (y | I) for the iNaturalist test set.

Ablation of database size: For the ablation on database
sizes, we used a stratified sampling strategy to create
smaller databases with 75%, 50%, 25%, and 10% of the
original data. The original data contained around 82,000
locations uniformly distributed across the landmass. The
82k locations are a subset of the SatCLIP [18] dataset after
removing corrupted downloads. We use fixed hyperpa-
rameters for the models across all tasks while varying the
database size.

9. Quantitative Evaluation of β parameter

In this section, we show how the β parameter can be tuned
to solve geospatial tasks at different resolutions. To show
this, we use the checkerboard experiment, which was used
by Rußwurm et al. [33]. We choose k points in the sphere
using Fibonacci-lattice; the surface area represented by
each point is almost identical [12, 33]. Each of these points
is assigned one out of 16 categories in a regular order. For
the train and test set, we sample 10,000 points on the sphere
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SatCLIP 36.0 26.4 25.5 25.5 21.7
GeoCLIP 64.1 22.8 15.7 14.4 13.8
CSP-INat 44.9 27.1 24.0 21.9 18.5
CSP 67.8 33.8 26.8 23.9 21.1
SINR 87.6 58.4 34.3 22.6 19.0

0 94.0 73.2 50.0 43.1 37.8
0.25 93.3 72.6 55.8 50.7 45.3

RANGE+ 0.5 92.3 70.0 56.4 52.3 47.2
0.75 89.4 65.1 54.5 50.6 46.3

1 65.7 53.6 50.5 46.6 42.6

Table 5. We quantitatively show that controlling the beta param-
eter allows us to generate optimal embeddings depending on the
resolution of the task. We evaluate on the checkerboard task [33]
and change the number of grid cells in the Fibonacci lattice to sim-
ulate tasks with different spatial resolutions. Lower β yields bet-
ter embeddings for low-resolution tasks, whereas higher β yields
better embeddings for high-resolution tasks. We see that we out-
perform all the baselines across all spatial resolutions.

and assign each point the label of the closest labeled point.
The task is to learn a linear model to classify each point (we
use the same strategy described in Section 8).

Changing k allows us to change the spatial scale of the
task. Higher k creates more grid cells and, therefore, re-
quires higher resolvable resolution. We use different β val-
ues to solve the checkerboard task with different k’s. The
results are shown in Table 5. The columns in the table shows
the different values of k and the average distance between
the checkerboard centers in degrees. We see that as we in-
crease the resolution of the task, increasing the value of β
(reducing spatial smoothness) achieves better performance.
Similarly, lower β (adding spatial smoothness) performs
better for low-resolution tasks.

We outperform the existing baselines across all resolu-
tions. Within the baselines, SINR performs the best at lower
resolutions, whereas SatCLIP performs better at higher res-
olutions. The quantitative results validate the qualitative re-
sults from Section 5.4. RANGE+ outperforms all the base-
lines across all spatial resolutions. At β = 0.5, we get the
most stable performance across different resolutions. We
also see that the gap between the state-of-the-art baseline
and RANGE+ increases more dramatically for higher reso-
lutions.



Models temp mean temp min temp max dew temp precipitation pressure u wind v wind Avg
CSP 0.944 0.933 0.940 0.918 0.610 0.427 0.499 0.550 0.727
CSP-INat 0.987 0.897 0.886 0.857 0.534 0.307 0.413 0.386 0.658
SINR 0.982 0.975 0.976 0.977 0.758 0.706 0.726 0.694 0.849
GeoCLIP 0.960 0.953 0.948 0.954 0.591 0.651 0.502 0.529 0.761
SatCLIP 0.904 0.900 0.887 0.894 0.497 0.743 0.488 0.455 0.721
RANGE 0.975 0.972 0.966 0.972 0.759 0.888 0.741 0.717 0.873
RANGE+ 0.990 0.985 0.984 0.988 0.815 0.896 0.742 0.772 0.896

Table 6. We show the linear probe results on real-world climate data from ERA5. We predict 8 different climate variables using different
location encoders. The results show that RANGE and RANGE+ achieve the two highest average R2 across all variables, with RANGE+

consistently achieving the best performance for each task.

Figure 6. We visualize the geo-embeddings from different models on a country scale (USA) by projecting them into a 3-dimensional vector
using Independent Component Analysis (ICA).

10. Evaluation on ERA5 data
We also evaluate our models on climate data from ERA5.
We use 8 climate variables, namely, mean air temperature,
maximum air temperature, minimum air temperature, dew-
point temperature, precipitation, surface pressure, u com-
ponent of the wind and v component of the wind. We fit
a linear model to predict each of these variables using the
location embeddings from different location encoders. We
use the same hyperparameters for RANGE and RANGE+

that are described in Section 8. Table 6 shows the R2 val-
ues for each task from each model. We show that RANGE
and RANGE+ achieve the two highest average R2 across
all tasks. Furthermore, RANGE+ also achieves the highest
R2 value for each task separately.

11. Visualizing Geo-Embeddings at Country
Scale

In Section 5.4, we visualized the location embeddings on a
global scale. Here, we visualize the location embeddings on
a country scale. We densely sample points across the United

States and use them to compute the location embeddings.
We use Independent Component Analysis to project each
embedding to a 3-dimensional vector and use it to represent
the RGB channels. For different models, the same colors
do not necessarily indicate similar information. We can see
the visualizations in Figure 6. Visually, it appears that the
RANGE embeddings can capture local variations relatively
well.

12. Geoprior Evaluation with Training-free
Baselines

In Section 5.2, we evaluated different training-based loca-
tion encoding methods on geoprior task using iNaturalist
data. Here, we show the results of using training-free loca-
tion encoding methods. Table 7 shows that RANGE models
outperform the training-free baselines.

13. Computational Cost
The retrieval process incurs some added computational
cost. However, our setup makes this process highly ef-



top-1 top-3 top-5 top-10
Direct 63.5 81.7 87.0 91.8
Cartesian 65.0 82.7 87.7 92.3
Wrap 65.4 83.1 87.9 92.5
SphereC+ 69.5 85.5 89.9 93.5
SphereM+ 70.8 86.3 90.5 93.9
RANGE 75.2 89.6 92.9 95.5
RANGE+ 75.1 89.5 92.8 95.5

Table 7. Top-k classification accuracy on INat-2018 test split:
Comparing our model with training free baselines.

ficient. Generating the feature bank is a one-time opera-
tion, which is inexpensive for a few thousand images (Sec-
tion 5.3). Second, the retrieval process is completely vector-
ized and highly efficient. For reference, when using the 10k
database, computing the RANGE embeddings for 1 million
input locations takes less than 65 seconds on our CPU and
less than 10 seconds on our H100 GPU, making our method
efficient for any practical usage.

14. Limitations and Future Work
In our work, we argued the limitations of learning geo-
embeddings by contrastively aligning location and images
from the perspective of multi-view redundancy. While
the aforementioned problems exist for any location-image
alignment, we propose a solution for improving location
and satellite-image alignment. In this paper, we exploit spe-
cific properties of satellite data to circumvent the existing
issues. In the future, we would like to extend this work to
all location-image alignment settings.


