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A. On the density peaks clustering algorithm
Density Peak Clustering (DPC) is a clustering algorithm
that identifies cluster centers based on local density and the
distance to points with higher density, denoted as δi. The
density, ρi, can be measured by counting the number of
points within a cutoff distance dc from ui, or by using a
Gaussian function where nearby points contribute more to

the density, ρi =
∑
j exp

(
−
(
dij
dc

)2)
. Points with high ρi

and δi values are selected as cluster centers. This selection
can be done by defining a threshold t and designating points
as cluster centers where ρi · δi ≥ t×max(ρi · δi), or by se-
lecting a fixed percentage. Other points are then assigned
to the cluster of the nearest higher-density point, iterating
from the highest to the lowest density. This process can
create clusters of varying shapes, where the maximum dis-
tance between elements within a cluster can be extremely
large. In extreme cases, the two farthest points in the input
data can end up in the same cluster.

B. DBDPC Characteristics
This section aims to prove that DBDPC guarantees that:
Each element’s distance to its assigned cluster center is at
most dc and that all cluster centers are at least dc apart.
Assume, for contradiction, that at least one of the following
statements is false:
1. There exists an element i assigned to a cluster such that

its distance to the cluster center is greater than dc, i.e.,
dis > dc.

2. There exist two cluster centers s1, s2 such that their pair-
wise distance is at most dc, i.e., ds1s2 ≤ dc.

Contradiction for Assumption 1 In DBDPC, each ele-
ment i is assigned to its closest cluster center:

si = arg min
s∈Ccenters

dis.

If dis > dc for a given center s, then we have dis′ > dc for
all centers. However, in the DBDPC selection process, an
element is assigned as a cluster center if its minimum dis-
tance to already selected centers is over dc. Thus, i should
have been selected as a new cluster center, and its distance
to the closest cluster center would be zero, which leads to a
contradiction, proving that every element satisfies dis ≤ dc.

Contradiction for Assumption 2 Assume, without loss
of generality, that s2 is chosen after s1. By the center selec-

tion criterion, a new center s2 is added only if:

min
s∈Ccenters

ds2s > dc.

If ds1s2 ≤ dc, then s2 shouldn’t be selected as a cluster
center, which leads to a contradiction. Thus, no two centers
can be closer than dc.
Inter-cluster distance upper-bound : Here we will refer to
cosine similarity by sim. Let’s x and y be two points in the
same cluster, and s their cluster center. Since each point x is
within dc of its cluster center s and the distance used in the
DBDPC algorithm is 1− sim, we have sim(x, s) ≥ 1− dc.
We have from [42]:

sim(x,y) ≥ sim(x, s) · sim(s,y) + m− 1,

where m = min
{
sim(x, s)2, sim(s,y)2

}
.

Using sim(x, s), sim(s,y) ≥ 1− dc we get

sim(x,y) ≥ (1−dc)2 + (1−dc)2 − 1 = 1−2 dc (2−dc).

Finally, converting this back to the distance d(x,y) = 1 −
sim(x,y), we obtain:

d(x,y) ≤ 2 dc (2− dc).

Therefore, the intra-cluster distance in the DBDPC algo-
rithm is bounded by 2 dc (2− dc).

C. A comparison between DBDPC and other
clustering algorithms

Comparison between DBDPC and DPC: We note that,
aside from using densities, DBDPC is fundamentally dif-
ferent from DPC. Please refer to Appendix A for a detailed
explanation of the DPC algorithm. The center identification
process in DBDPC results in two main characteristics with
formal proof detailed in Appendix B. First, the distance
between each element and its cluster center is below dc,
which leads to inter-cluster distances being upper-bounded
by 2dc × (2− dc). Additionally, the distance between clus-
ter centers is lower-bounded by dc. These guarantees do
not hold for DPC, leading to two drawbacks. Since inter-
cluster distances are not controlled, merging these vectors
may result in merging highly dissimilar vectors, leading to
information loss. Also, in high-density regions, the distance
between cluster centers becomes too small, making DPC in-
effective in addressing information redundancy.
A Qualitative comparison Figure 11 presents the cluster-
ing results for DBDPC, DPC, DBSCAN, and K-Means on a



Algorithm 4 Recursive Center Identification for DBDPC
with Iterative Center Identification
Input: Cutoff distance dc ∈ R+, set of vectors U = {ui ∈
Rdl}ni=1, density values {ρi}ni=1, distance matrix D =
[dij ], fallback threshold T > 0

Output: Cluster center indices Ccenters
Initialize cluster center set Ccenters = ∅
Set the density of each point :

ρi = argsort({−ρj}nj=1)[i]

while U 6= ∅ do
Compute δi for all vectors ui ∈ U:

δi = min
ρj>ρi

dij

Select cluster candidates:

Cnew = {ui ∈ U | δi > dc}

Ccenters ← Ccenters ∪Cnew
Update remaining vectors:

U← U \
(
Cnew ∪

{
uk ∈ U | ∃ui ∈ Cnew

such that dik ≤ dc

})
if |Cnew| < T then

Order remaining vectors U by decreasing ρi:
U← Sort(U, key = ρi, order = descending)
Call Iterative Center Identification:
Ccenters ← IterativeCenterIdentification(Ccenters,U, dc)
return Ccenters

end if
end while
return Ccenters

Function: Iterative Center Identification
Inputs: Remaining vectors U (ordered by ρi), current
cluster center set Ccenters, cutoff distance dc
Outputs: Updated cluster center indices Ccenters
for all ui ∈ U do

if minus∈Ccenters dis > dc then
Ccenters ← Ccenters ∪ {ui}

end if
end for
return Ccenters

predefined set of two-dimensional points. The figure shows
that only DBDPC and DBSCAN identify isolated points as
distinct clusters, a crucial feature for visual token reduction,
as these points contain unique and thus potentially valuable
information. We note that, for DBSCAN, these isolated

Figure 11. An illustrative example of the difference in cluster-
ing characteristics between DBDPC and other clustering algo-
rithms. Two-dimensional points and the Euclidean distance were
used for illustration purposes.

points may be identified as noise, depending on the chosen
hyperparameters. Moreover, DBDPC partitions both the
left and right groups of points into the same number of clus-
ters, maintaining consistency despite the higher density on
the left side. In contrast, DPC tends to form a greater num-
ber of clusters in high-density regions while creating large
clusters in low-density areas, whereas DBSCAN follows the
opposite pattern, producing large clusters in high-density
regions. In the context of visual token reduction, merging
points within these large clusters can result in information
loss, leading to performance degradation and making DPC
and DBSCAN less suitable than DBDPC for this task. We
note that the results presented in Fig. 11 for DPC and DB-
SCAN may change when modifying the hyperparameters;
however, the characteristics discussed above persist across
different hyperparameter choices.

D. Efficient center identification in DBDPC
D.1. A recursive approach
To enhance the efficiency of the DBDPC algorithm, we in-
troduce a recursive center identification method that reduces
computational overhead while maintaining clustering accu-
racy. In the DBDPC algorithm, vectors are processed in de-
scending order of their local densities ρi, and a vector ui is
selected as a cluster center if it is farther than the cutoff dis-
tance dc from all previously selected centers. Implementing
this as described in the algorithm requires sequentially iter-
ating through all the vectors and checking distances to all
previously selected centers, which does not fully leverage
GPU parallelization capabilities. In the DBDPC algorithm,
when two points have the same density, one is treated as if it
has a higher density than the other, depending on the order
of their processing. To replicate this behavior, we assign the



density of each point to its rank as:

ρi = ranki = argsort({−ρj}nj=1)[i]

Our accelerated method leverages the quantity δi, represent-
ing the minimum distance from vector ui to any higher-
density vector:

δi = min
ρj>ρi

dij (11)

If δi > dc, then ui is selected as a cluster center because
it is not within dc of any higher-density vector, which are
the only potential cluster centers that can be selected be-
fore dij in the DBDPC algorithm. In addition, any vector
within dc of a cluster center identified using δi has a lower
density than that center, as cluster centers identified using
δi are not within dc of any higher-density vector. In the
DBDPC algorithm, such a vector would not be chosen as a
cluster center because it violates the distance condition rel-
ative to already selected centers. By identifying these vec-
tors early, we can exclude them from further consideration
as potential centers. We repeat this process recursively: af-
ter selecting cluster centers where δi > dc and excluding
vectors within dc of these centers, we process the remain-
ing vectors. This recursion continues until the number of
newly discovered cluster centers becomes small (e.g., less
than 10). At that point, we fall back to the DBDPC method,
processing the remaining vectors iteratively to ensure all
potential centers are considered. This recursive approach
reduces the number of iterations in the main loop and en-
hances parallelization, particularly on GPUs, by minimiz-
ing sequential computation. By leveraging δi and incorpo-
rating an early exclusion mechanism, the recursive center
identification method reduces computational time while en-
suring the same clustering results as the DBDPC algorithm.
The recursive approach decreases the number of iterations
and enhances GPU parallelization by minimizing sequential
computation, making the algorithm more efficient for large
datasets. The recursive center identification method is pre-
sented in Algorithm 4. We note that in practice this recur-
sive approach reduce the computational time of the DBDPC
algorithm by around 3 times.

D.2. Proof of correctness of the recursive approach
To validate the correctness of the accelerated method, we
demonstrate the following key points: selected centers are
valid cluster centers, excluded vectors are not cluster cen-
ters and identifying remaining cluster centers is equivalent
to identifying cluster centers on the reduced set. Proving
these points suffices to establish correctness, as the remain-
ing vectors after the recursive steps are treated the same as
in the DBDPC algorithm.
Selected Centers Are Valid Cluster Centers In the DB-
DPC algorithm, for any vector ui, only vectors with higher

densities are considered for selection as cluster centers be-
fore ui. If ui is not within dc of any higher-density vector
(i.e., δi > dc) then the distance of ui from any previously
selected center cannot exceed the cutoff distance dc. Conse-
quently, ui satisfies the condition for being a cluster center
in the DBDPC algorithm, as it is farther than dc from all
centers processed earlier.
Excluded Vectors Are Not Cluster Centers Vectors within
dc of a cluster center identified using δi have lower densi-
ties than that center, as these centers are not within dc to any
higher density point. In the DBDPC algorithm, such vec-
tors would not be selected as cluster centers because they
are within dc to an already selected center, violating the
distance condition. Therefore, excluding these vectors early
does not affect the selection of valid cluster centers.
Identifying Remaining Cluster Centers is Equivalent to
Identifying Cluster Centers on the Reduced Set After se-
lecting cluster centers where δi > dc and excluding vectors
within dc of these centers, we focus on the reduced set of
remaining vectors for further processing. The critical obser-
vation is that the previously selected cluster centers are not
within dc of any vector in the reduced set. This is ensured
by the exclusion step, where all vectors within dc of these
centers have been removed. Consequently, when identify-
ing new cluster centers within the reduced set, we do not
need to consider distances to the previously selected cen-
ters, as they cannot influence the selection due to their dis-
tance. Moreover, the vectors that have been excluded are
not potential cluster centers themselves. Meaning that they
can not influence the center selection process. This means
that any vector satisfying δ > dc in the reduced set, is ac-
tually not within dc to any higher density potential cluster
center form the initial set, making it a cluster center.

E. Proportional attention
Token merging reduces their impact within the attention
mechanism, potentially degrading performance. To miti-
gate this, we employ proportional attention. Let K, Q, and
V denote the keys, queries, and values at a layer L′, where
L′ ≥ L. For each attention head j, the attention scores are
calculated as follows:

A(j) = softmax
(
Q(j)K(j)>
√
dl′

+ logW +B

)
(12)

where dl′ is the dimensionality of the query for each atten-
tion head. Here, W is a matrix representing the weight of
each token, and B is the attention mask. Specifically, for
visual tokens, wi0,i1 represents the size of the cluster corre-
sponding to token i1, for any value of i0. For each textual
token at position t, wi0,t = 1, as they remain unmerged,
retaining a weight of one. By scaling the attention scores
based on W, the model effectively treats each visual to-
ken as if it represents multiple tokens. We note that when



using proportional attention, we use PyTorch’s scaled dot-
product attention2, which produces similar results to the of-
ficial FlashAttention implementation while supporting cus-
tom masks.

F. On the choice of Positional IDs for clustering
algorithms

In our work, we benchmark four clustering algorithms:
agglomerative clustering [1], k-means [2], Density Peaks
Clustering (DPC) [5], and DBSCAN [15]. For each algo-
rithm, we use the key vectors for clustering, apply a cosine
similarity-based distance (as in DBDPC), and evaluate two
strategies: merging the hidden states within each cluster or
selecting the cluster center as a representative token. We re-
port the best-performing approach for each algorithm. Sim-
ilar to DBDPC, we assign the position ID of the cluster cen-
ter to the resulting vectors. However, apart from DPC, the
other clustering algorithms do not explicitly provide a clus-
ter center. For k-means and agglomerative clustering, we
select the cluster center as the point closest to the average
of all points in the cluster, using keys and cosine similarity.
For DBSCAN, we experimented with choosing the point
connected to the most other points within the cluster and
found this approach to yield slightly better results, aligning
better with the principles of DBSCAN. Thus, we adopted
this strategy in our tests.

G. More about applying ToME to Visual Lan-
guage Models

ToMe reduces the number of visual tokens at each layer of
the transformer. For a given layer i, the process starts by
splitting the tokens into two distinct sets, A and B. Each to-
ken in set A is matched with its most similar counterpart in
set B, using cosine similarity based on key vectors to de-
termine the closest pairs. The top ri pairs with the highest
similarity are then selected for merging. Connected com-
ponents from the matched pairs are combined into single
vectors, where hidden states are averaged. It is important to
note that each connected component contains exactly one
element from set B, and when applying ToME to Visual
Language Models, this element’s position ID is assigned to
the merged token. In [7], the number of visual tokens was
reduced by a fixed quantity (ri = r). However, this fixed re-
duction scheme cannot achieve more than a 50% reduction
unless no reduction is done at later layers when the number
of tokens drops below r, which goes against the gradual re-
duction strategy proposed in ToMe. To enable higher reduc-
tion ratios, we adopt a linearly decreasing scheduler, where
the reduction is higher in early layers and decreases in later

2https : / / pytorch . org / docs / stable / generated /
torch.nn.functional.scaled_dot_product_attention.
html

layers. This approach achieves a smaller average number of
visual tokens across the network while still reducing the to-
ken count at each layer, allowing us to reach high reduction
ratios effectively.

H. Implementation details and hyper-
parameters for PACT

For all experiments on LLaVA-OneVision-7B, we set dn =
2, α = 1.5, and L = 4. While the optimal values of each
parameter may vary depending on the dataset, we aim to
evaluate the real-world effectiveness of our approach by us-
ing consistent values across all testing datasets. The results
in Tab. 2 were obtained using dc = 0.17 and λ = 0.4. Ad-
ditionally, to demonstrate the performance of our approach
at different reduction ratios, we vary dc and λ and report the
results. The values of the fixed parameters dn and α were
chosen by performing a grid search on SeedBench [25],
which is why we do not include SeedBench in the testing
datasets. It is important to note that finding the optimal pa-
rameters for all testing datasets is not the focus of this study,
as this would require extensive testing of different values
for dc, λ, L, α, and dn on all test sets. Such an approach
would not accurately reflect the real-world performance of
our method. Instead, we chose to only vary dc and λ to eval-
uate the effectiveness of our approach at different reduction
ratios. When testing on SeedBench, we found that a pruning
ratio higher than 60% harms performance. Therefore, we
vary the pruning ratio between 10% and 60% and test across
different values of dc. When testing PACT on LLaVA-1.6-
Mistral-7B, Qwen2-VL-7B-Instruct and InternVL2-8B. We
use the same values of dn and α as when testing on LLaVA-
OneVision-7B. We note that these hyperparameters may not
be optimal; however, as we aim to test the generalizability
of our approach, we opt to use the same hyperparameters
across models. Figure 12, Figure 13 and Figure 14 show
the maximum distance between the keys at several layers
of the language model for LLaVA-1.6-Mistral-7B, Qwen2-
VL-7B-Instruct and InternVL2-8B. Following the same ap-
proach for LLaVA-OneVision-7B, we choose L = 4 for
Qwen2-VL-7B-Instruct and L = 7 for InternVL2-8B. We
note that the choice of the reduction layer for InternVL2-8B
is not as evident as for LLaVA-OneVision-7B and Qwen2-
VL-7B-Instruct, as the increase in maximum distance from
one layer to the next is sometimes minimal, making it un-
clear which layer offers the best balance between accuracy
and computational efficiency. However, since we do not aim
to experimentally determine the optimal reduction layer, we
end up choosing L = 7, as the maximum distance between
keys is increased by an acceptable amount between the sev-
enth and eighth layer. Following the same approach we use
L = 7 for LLaVA-1.6-Mistral-7B.



I. More about test datasets and used metrics

For evaluating the different approaches, we use LMMs-Eval
[6] and aim to follow the same dataset splits and metrics
as used in [27]. We detail the used splits and metrics in
Tab. 3. Some datasets require evaluation using a GPT model
through the OPENAI API or other closed-source models.
However, for many datasets the version of the closed-source
model used in evaluating LLaVA-OneVision in [27] is no
longer available. So we use the latest version of GPT-4 for
our assessments at the time of publication (gpt-4o-2024-08-
06). We also observed that when calling a closed-source
model like GPT-4 via an API, the responses are not fully de-
terministic, even with a temperature set to zero, introducing
some noise into the evaluation metrics. To reduce this noise,
we exclude all these datasets when testing across different
reduction ratios. On the other hand, for Tab. 1, we exclude
MMVet, Vibe-Eval, VideoChatGPT, MM-LiveBench, and
LLaVA-Wilder as they have high inference times, which
would dominate the throughput calculation.
For certain datasets, such as DocVQA, InfoVQA, and
TextVQA, we use the validation split contrary to [27]. This
choice allows us to test various reduction ratios and ap-
proaches without requiring submission to the test server,
which would be impractical for extensive testing. For
datasets requiring a test set submission (EgoSchema and
PerceptionTest), where either the validation set is typically
not used for evaluation or does not exist, we report the
submission-based metrics evaluated directly on the test set.
As explained above, for some datasets our evaluation setup
differs from the one used for evaluating LLaVA-OneVision
in [27], which may result in variations in the reported re-
sults for this model on certain datasets. This is primarily
due to the use of validation splits for DocVQA, InfoVQA,
and TextVQA, as well as the reliance on GPT-based metrics
for some datasets (a common practice for these benchmarks,
making alternative evaluation difficult). Nevertheless, our
comparisons remain fair, as the same evaluation procedure
is consistently applied across all approaches and reduction
ratios. Notably, when testing on Qwen2-VL-7B-Instruct
without reduction, some datasets encountered GPU out-of-
memory errors (MLVU, VideoMME, and ActivityNet Per-
ception) which we excluded from the test set. Additionally,
results on ScienceQA were quite low when tested without
reduction (0.132), leading to its exclusion from testing as
well. We note that, as we use LMM-Eval [6] for evaluation,
results differ for some datasets from the officially reported
results, as prompts are sometimes not formatted in the same
manner. This observation also applies to InternVL2-8B.

J. Additional numerical results

Table 7 and Tab. 8 show a comparison of DBDPC and
various clustering algorithms for a reduction ratio of ap-

Figure 12. Illustration of the maximum distance between the
keys of visual tokens for the first 10 layers of LLaVA-1.6-
Mistral-7B before the application of rotary embeddings.

Figure 13. Illustration of the maximum distance between the
keys of visual tokens for the first 10 layers of Qwen2-VL-7B-
Instruct before the application of rotary embeddings.

proximately 60% on LLaVA-OneVision-7B across multi-
ple datasets. The results demonstrate that DBDPC outper-
forms other clustering algorithms in visual token reduction
for the majority of the datasets. Additionally, the tables
show that the clustering process for DBDPC is significantly
faster than that of other clustering algorithms. Table 9
presents a comparison of EUTI-based visual token pruning
and FastV for a reduction ratio of approximately 60% on
LLaVA-OneVision-7B across various datasets. The results
indicate that EUTI outperforms FastV on most datasets
while also being more computationally efficient. Table 14
shows that using keys for distance calculations in DBDPC
outperforms hidden states across the majority of the test
datasets. Also, we present a comparison between PACT
and other visual reduction techniques for Qwen2-VL-7B-
Instruct, InternVL2-8B, and LLaVA-1.6-Mistral-7B across
different datasets in Tab. 5, Tab. 4, and Tab. 6.



Figure 14. Illustration of the maximum distance between the
keys of visual tokens for the first 10 layers of InternVL2-8B
before the application of rotary embeddings.

K. Ablation study : Additional numerical re-
sults

Table 10 shows a comparison between PACT, DBDPC, and
EUTI for a reduction ratio of approximately 70%, applied
on LLaVA-OneVision-7B. The results demonstrate that
PACT, which combines both clustering and pruning, out-
performs the other two methods that are either clustering-
based or pruning-based across various datasets. More im-
portantly, DBDPC and EUTI exhibit a significant drop in
performance on some of the datasets, which is not the case
for PACT. We note that numerical results for the ablation
studies conducted on DBDPC, EUTI, and PACT can be
found in Tab. 11, Tab. 12 and Tab. 13.



Table 3. Dataset Splits, Subsets, and Evaluation Metrics Used in Our Experiments. Default indicates the use of the standard test split
or cases where only one split/subset is available. The evaluation metrics employed are those commonly used for the respective datasets
and generally the ones proposed in the official papers. For GPT-based scores (or any model-based scores), this means that a GPT model
was used during evaluation, typically to extract answers from the generated output text, which are then matched with the ground truth to
calculate accuracy using exact matches. When accuracy is reported, it generally implies that only an exact match is considered a correct
answer.

Dataset Split Subset Evaluation Metric

VideoMME Default No subtitles Accuracy
MME Default Default MME Perception Score
DocVQA Validation Default ANLS
MLVU Default Default Accuracy
LLaVA-Interleave Default Out-domain Accuracy
ChartQA Validation Default Relaxed Accuracy
MMBench Validation English GPT-based Score
MuirBench Default Default Accuracy
ScienceQA Default Vision only Accuracy
MMMU Validation Default Accuracy
AI2D Default Default Accuracy
InfographicVQA Validation Default ANLS
MMStar Default Default Accuracy
ActivityNetQA Default Default GPT-based Score
MM-LiveBench Default 2406 GPT-based Score
LLaVA-Wilder Default Small GPT-based Score
MathVerse Default Vision mini GPT-based Score
MathVista Default Testmini GPT-based Score
MMVet Default Default GPT-based Score
Vibe-Eval Default Default REKA-based Score
VideoChatGPT Default Default GPT-based Score
EgoSchema Default Default Submission
PerceptionTest Default Multiple Choice QA Submission
TextVQA Validation Default Official metric

Table 4. Comparison of PACT with FastV, VTW, and ToME applied on Qwen2-VL-7B-Instruct across Various Datasets.

Dataset No Reduction PACT (Ours) FastV VTW ToME

Metric Proc. Time Metric Red. Ratio Proc. Time Metric Proc. Time Metric Proc. Time Metric Proc. Time

MME 1654.5 0.238 1664.7 86.3% 0.110 1594.3 0.111 1218.5 0.120 1607.5 0.140
DocVQA 93.9 0.516 90.5 77.5% 0.294 84.3 0.298 8.7 0.249 67.1 0.350
TextVQA 81.8 0.155 80.4 67.5% 0.132 79.6 0.135 14.2 0.118 63.9 0.151

InfographicVQA 74.6 0.478 70.5 69.7% 0.278 63.3 0.273 21.5 0.225 43.9 0.299
ChartQA 80.8 0.145 76.2 61.1% 0.135 69.4 0.134 16.1 0.123 57.0 0.155

MMBench 77.6 0.074 77.1 51.5% 0.077 76.9 0.074 76.9 0.073 76.1 0.080
MuirBench 40.7 0.159 41.4 76.9% 0.113 40.5 0.112 38.0 0.111 41.0 0.125

MMMU 51.4 0.109 51.2 72.6% 0.093 49.3 0.092 46.7 0.088 48.6 0.105
AI2D 79.9 0.105 78.4 64.2% 0.096 76.7 0.097 69.0 0.087 76.7 0.115

MMStar 56.0 0.072 54.5 61.3% 0.072 52.6 0.067 40.8 0.065 52.7 0.077
EgoSchema 62.1 0.360 61.6 60.0% 0.207 60.2 0.212 46.3 0.190 61.2 0.230
MathVerse 25.3 0.620 24.5 82.2% 0.393 23.7 0.396 15.4 0.296 18.1 0.651
MathVista 59.2 0.249 57.7 73.3% 0.195 56.4 0.194 35.6 0.165 53.5 0.275

MMVet 24.9 4.700 25.1 80.3% 3.820 22.3 3.830 14.5 3.650 16.7 4.780
Vibe-Eval 47.5 3.200 46.1 85.0% 2.310 44.3 2.375 28.3 1.993 29.6 3.620

LLaVA-Interleave 35.3 0.120 35.6 73.7% 0.100 34.8 0.101 33.4 0.096 33.6 0.125
MM-LiveBench 72.6 3.970 70.7 77.1% 3.040 63.0 3.120 43.8 2.970 57.6 4.450



Table 5. Comparison of PACT with FastV, VTW, and ToME applied on InternVL2-8B on Various Datasets.

Dataset No Reduction PACT (Ours) FastV VTW ToME

Metric Proc. Time Metric Red. Ratio Proc. Time Metric Proc. Time Metric Proc. Time Metric Proc. Time

VideoMME 52.2 0.247 51.1 68.4% 0.151 51.3 0.155 51.0 0.142 50.2 0.190
MME 1621.0 0.171 1591.9 69.9% 0.121 1588.7 0.118 1627.0 0.111 1533.3 0.155

DocVQA 90.0 0.301 87.0 52.1% 0.251 86.2 0.254 52.2 0.229 83.4 0.248
MLVU 50.6 0.439 49.7 68.8% 0.326 48.8 0.325 49.5 0.333 29.3 0.343

LLaVA-Interleave 40.0 0.390 39.0 71.2% 0.265 39.7 0.263 39.6 0.230 36.7 0.316
ChartQA 82.7 0.221 81.2 59.2% 0.184 81.2 0.182 47.5 0.175 71.4 0.202
MMBench 81.9 0.161 80.4 70.4% 0.118 80.2 0.116 80.2 0.109 70.8 0.165
MuirBench 35.7 0.432 34.4 70.3% 0.249 35.6 0.258 33.7 0.210 32.7 0.296
ScienceQA 97.1 0.165 97.1 70.8% 0.118 95.8 0.116 95.7 0.109 89.9 0.151

MMMU 48.5 0.167 48.0 70.6% 0.126 47.7 0.126 47.8 0.119 47.5 0.156
AI2D 82.5 0.146 81.4 70.7% 0.112 78.5 0.110 79.6 0.105 74.4 0.142

InfographicVQA 66.0 0.206 63.4 50.7% 0.168 49.8 0.167 25.6 0.157 55.4 0.199
MMStar 59.0 0.179 56.7 70.4% 0.186 54.2 0.184 53.4 0.352 55.1 0.156
TextVQA 76.9 0.221 75.0 54.5% 0.186 73.9 0.199 61.6 0.194 71.6 0.189

PerceptionTest 57.7 0.300 56.8 66.0% 0.203 56.2 0.213 34.1 0.192 55.2 0.228
EgoSchema 54.0 0.240 53.7 67.0% 0.155 53.1 0.163 32.2 0.146 52.9 0.172
ActivityNet 51.7 0.240 51.3 66.0% 0.153 51.0 0.161 30.8 0.143 50.4 0.171

MM-LiveBench 68.0 3.075 67.3 68.0% 2.140 67.0 2.247 40.4 2.003 66.6 2.354

Table 6. Comparison of PACT with FastV, Prumerge, and Hired applied on LLaVA-1.6-Mistral-7B across multiple datasets.

Dataset No Reduction PACT (Ours) FastV Prumerge Hired

Metric Proc. Time Metric Red. Ratio Proc. Time Metric Proc. Time Metric Proc. Time Metric Proc. Time

MME 1500.0 0.237 1507.1 70.3% 0.159 1503.9 0.158 1485.4 0.166 1497.0 0.168
DocVQA 70.0 0.363 67.1 67.1% 0.284 64.5 0.281 48.8 0.293 65.8 0.295
ChartQA 52.9 0.332 49.3 70.1% 0.259 48.9 0.261 36.0 0.264 46.1 0.266

MMBench 68.2 0.226 68.0 71.9% 0.155 67.9 0.154 66.2 0.160 67.6 0.164
ScienceQA 73.0 0.197 72.7 71.5% 0.144 73.2 0.145 71.7 0.148 72.9 0.149

MMMU 34.2 0.239 34.9 71.5% 0.171 34.7 0.169 33.9 0.180 33.9 0.180
AI2D 67.5 0.233 67.5 70.9% 0.160 67.0 0.158 64.5 0.165 65.9 0.166

InfographicVQA 36.9 0.294 35.6 66.2% 0.226 33.4 0.229 31.9 0.236 31.6 0.236
MMStar 36.2 0.375 36.7 71.9% 0.350 36.6 0.400 35.1 0.345 35.9 0.345

Table 7. Comparison of DBDPC and Agglomerative Clustering Methods for a Reduction Ratio of approximately 60% on LLaVA-
OneVision-7B.

Dataset DBDPC (ours) Agg. (Single Linkage) Agg. (Average Linkage) Agg. (Complete Linkage)

Metric Proc. Time Algo. Time Metric Proc. Time Algo. Time Metric Proc. Time Algo. Time Metric Proc. Time Algo. Time

VideoMME 57.4 0.389 0.040 57.6 1.504 1.148 57.0 1.657 1.316 57.9 1.690 1.350
MME 1563.8 0.255 0.028 1554.1 0.994 0.738 1559.2 1.123 0.868 1563.0 1.151 0.897

DocVQA 84.7 0.530 0.044 83.6 1.899 1.379 84.4 2.185 1.662 84.3 2.308 1.777
MLVU 64.2 0.384 0.039 64.0 1.574 1.229 65.2 1.675 1.329 64.8 1.700 1.355

LLaVA-Interleave 62.1 0.151 0.016 62.0 0.425 0.277 61.5 0.446 0.298 61.4 0.446 0.298
ChartQA 76.0 0.366 0.031 74.5 1.151 0.798 75.8 1.253 0.910 75.8 1.277 0.930

MMBench 80.1 0.151 0.016 79.5 0.427 0.277 79.7 0.437 0.291 79.8 0.449 0.299
MuirBench 43.2 0.215 0.023 41.4 0.667 0.474 42.0 0.727 0.534 42.0 0.738 0.544
ScienceQA 94.7 0.147 0.015 94.8 0.394 0.250 94.7 0.416 0.271 94.7 0.413 0.269

MMMU 48.3 0.110 0.009 48.4 0.218 0.110 49.3 0.232 0.121 48.2 0.225 0.117
AI2D 80.7 0.202 0.022 80.8 0.667 0.472 80.6 0.748 0.551 80.1 0.753 0.557

InfographicVQA 61.6 0.528 0.046 57.1 1.608 1.181 59.8 1.818 1.394 59.8 1.870 1.436
MMStar 60.5 0.167 0.018 60.2 0.507 0.344 59.8 0.556 0.390 60.5 0.560 0.395



Table 8. Comparison of DBDPC, DBSCAN, DPC, and KMeans Clustering Methods for a Reduction Ratio of approximately 60%
on LLaVA-OneVision-7B.

Dataset DBDPC (ours) DBSCAN DPC KMeans

Metric Proc. Time Algo. Time Metric Proc. Time Algo. Time Metric Proc. Time Algo. Time Metric Proc. Time Algo. Time

VideoMME 57.4 0.389 0.040 56.7 2.090 1.731 57.2 0.729 0.392 57.3 1.725 1.383
MME 1563.8 0.255 0.028 1531.3 1.577 1.304 1556.7 0.637 0.380 1549.9 1.254 0.999

DocVQA 84.7 0.530 0.044 83.5 4.127 3.607 83.8 0.950 0.442 79.6 2.059 1.544
MLVU 64.2 0.384 0.039 62.9 2.041 1.700 64.2 0.727 0.382 64.6 1.725 1.377

LLaVA-Interleave 62.1 0.151 0.016 63.9 0.697 0.547 62.3 0.258 0.121 62.3 0.711 0.566
ChartQA 76.0 0.366 0.031 74.6 1.851 1.507 74.9 0.758 0.415 74.2 1.399 1.059

MMBench 80.1 0.151 0.016 78.3 0.725 0.580 79.4 0.326 0.179 79.9 0.702 0.552
MuirBench 43.2 0.215 0.023 40.4 1.143 0.943 43.9 0.466 0.273 42.9 0.955 0.763
ScienceQA 94.7 0.147 0.015 91.5 0.665 0.518 94.2 0.251 0.117 93.4 0.661 0.518

MMMU 48.3 0.110 0.009 47.5 0.373 0.263 48.3 0.187 0.078 48.2 0.500 0.391
AI2D 80.7 0.202 0.022 80.2 1.165 0.971 81.0 0.455 0.264 81.1 1.062 0.860

InfographicVQA 61.6 0.528 0.046 56.6 2.584 2.147 59.2 0.975 0.547 57.8 1.780 1.357
MMStar 60.5 0.167 0.018 58.0 0.870 0.704 60.6 0.376 0.213 60.2 0.828 0.661

Table 9. Comparison of EUTI-based visual tokens pruning and FastV for a Reduction Ratio of approximately 60% on LLaVA-
OneVision-7B.

Dataset EUTI (Ours) FastV

Metric Proc. Time Algo. Time Metric Proc. Time Algo. Time

VideoMME 58.4 0.351 0.005 57.6 0.381 0.040
MME 1560.0 0.256 0.004 1570.7 0.283 0.025

DocVQA 86.5 0.521 0.005 85.3 0.559 0.032
MLVU 64.3 0.355 0.004 63.1 0.391 0.040

LLaVA-Interleave 58.9 0.140 0.003 59.7 0.152 0.007
ChartQA 78.6 0.344 0.004 78.0 0.363 0.016
MMBench 80.2 0.142 0.003 79.2 0.151 0.005
MuirBench 40.0 0.191 0.003 40.8 0.204 0.009
ScienceQA 93.6 0.137 0.003 92.3 0.149 0.006

MMMU 48.8 0.101 0.002 47.3 0.110 0.003
AI2D 81.1 0.191 0.003 80.3 0.202 0.009

InfographicVQA 63.0 0.425 0.005 60.3 0.473 0.040
MMStar 59.6 0.159 0.003 59.6 0.170 0.007

Table 10. Comparison of PACT with Standalone Methods: EUTI-based Visual Token Pruning and DBDPC Clustering Algorithm
for a Reduction Ratio of approximately 70%, applied on LLaVA-OneVision-7B.

Dataset PACT DBDPC EUTI

Metric Proc. Time Algo. Time Metric Proc. Time Algo. Time Metric Proc. Time Algo. Time

VideoMME 57.5 0.321 0.021 57.3 0.342 0.040 58.4 0.305 0.005
MME 1558.7 0.226 0.017 1543.7 0.243 0.028 1595.9 0.213 0.004

DocVQA 84.3 0.467 0.026 82.5 0.500 0.044 85.3 0.456 0.005
MLVU 64.6 0.322 0.022 63.9 0.358 0.039 64.4 0.291 0.004

LLaVA-Interleave 63.9 0.133 0.010 62.6 0.149 0.016 57.1 0.127 0.003
ChartQA 77.2 0.311 0.019 75.1 0.333 0.031 78.2 0.292 0.004

MMBench 80.2 0.134 0.010 79.7 0.147 0.016 79.6 0.128 0.003
MuirBench 42.8 0.175 0.013 43.2 0.211 0.023 39.9 0.164 0.003
ScienceQA 93.6 0.130 0.010 93.8 0.142 0.015 92.2 0.123 0.003

MMMU 48.9 0.103 0.007 47.2 0.109 0.009 48.9 0.096 0.002
AI2D 80.6 0.173 0.013 80.5 0.191 0.022 79.9 0.164 0.003

InfographicVQA 61.9 0.403 0.023 58.8 0.465 0.046 60.4 0.360 0.005
MMStar 59.5 0.147 0.011 59.5 0.163 0.018 59.2 0.140 0.003



Table 11. Ablation Studies on DBDPC-based visual token reduction for a Reduction Ratio of approximately 60% on LLaVA-
OneVision-7B. We report only the metrics, as processing time is similar across different approaches. When ablating the Center Position-
IDs assignment, we reorder the hidden states based on the mean of the Position-IDs of the elements in each cluster and then assign position
IDs sequentially.

DBDPC w/o Center Position-IDs assignment w/o Proportional Attention w/o Merging

VideoMME 57.4 58.0 57.9 57.5
MME 1563.8 1539.3 1523.8 1476.9

DocVQA 84.7 28.2 84.2 83.1
MLVU 64.2 61.2 63.9 63.5

LLaVA-Interleave 62.1 69.6 63.2 63.6
ChartQA 76.0 24.8 76.0 74.4

MMBench 80.1 76.1 80.1 79.6
MuirBench 43.2 26.5 43.2 44.0
ScienceQA 94.7 67.4 94.2 93.6

MMMU 48.3 34.5 47.6 48.2
AI2D 80.7 43.0 80.4 79.9

InfographicVQA 61.6 17.8 59.8 58.7
MMStar 60.5 58.9 59.6 59.1

Table 12. Ablation Studies on the EUTI-based Visual Token Pruning for a Reduction Ratio of approximately 70%, applied on
LLaVA-OneVision-7B. We report only the metrics, as processing time is similar across different approaches.

Dataset EUTI EUTI w/o Norm Norm (EUTI w/o Global Query)

VideoMME 58.4 57.6 56.6
MME 1595.9 1573.4 1576.5

DocVQA 85.3 85.1 79.7
MLVU 64.3 63.0 63.1

LLaVA-Interleave 57.1 57.9 52.9
ChartQA 78.2 76.4 76.7

MMBench 79.6 79.4 79.4
MuirBench 40.0 40.5 39.6
ScienceQA 92.2 91.8 93.5

MMMU 48.9 49.3 49.2
AI2D 79.9 79.9 79.7

InfographicVQA 60.4 60.1 49.3
MMStar 59.2 57.4 59.2



Table 13. Ablation Study on Pruned Tokens Recovery for a Reduction Ratio of approximately 70%. We remove the token recovery
step, which is equivalent to Setting α to Zero. We report only the metrics, as processing time is similar across both approaches.

Dataset PACT PACT w/o Pruned-Token Recovery

VideoMME 57.6 57.4
MME 1556.7 1576.3

DocVQA 84.3 84.3
MLVU 64.6 64.2

LLaVA-Interleave 63.9 59.6
ChartQA 76.4 76.4

MMBench 79.9 79.8
MuirBench 42.8 42.2
ScienceQA 93.3 93.6

MMMU 48.5 48.5
AI2D 80.6 80.6

InfographicVQA 61.9 61.3
MMStar 75.1 74.9

Table 14. Ablation Study on Keys Utilization in DBDPC for a Reduction Ratio of approximately 60%. Metrics are reported, as
processing time is similar across both configurations.

Dataset DBDPC DBDPC w/o Keys

VideoMME 57.40 57.22
MME 1563.80 1526.18

DocVQA 84.70 80.50
MLVU 64.20 64.60

LLaVA-Interleave 62.10 60.80
ChartQA 76.00 68.80
MMBench 80.10 79.21
MuirBench 43.20 41.40
ScienceQA 94.70 91.90

MMMU 48.30 47.90
AI2D 80.70 79.10

InfographicVQA 61.6 56.70
MMStar 60.50 58.40


