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Supplementary Material

A. DINOSAUR Implementation Details
DINOSAUR uses a DINO [4] encoder to process the image
into features. It relies on a feature reconstruction loss to
supervise the object discovery process. Throughout the train-
ing, the DINO encoder is kept frozen. We adopt a similar
approach, however we use a DINOv2 [35] encoder instead
of a DINO encoder. Figure 6 illustrates the DINOSAUR ar-
chitecture with a DINOv2 backbone. Additionally, we have
added a learnable mapping network g, which is a 3-layer
Transformer after the frozen DINOv2 encoder. SA module is
applied on top of the mapping output as shown in Figure 2(a).

B. CTRL-O Implementation Details

Algorithm 1 Slot Attention with Language Conditioning
Input: inputs ∈ RN×Dinputs , slots ∈
RK×Dslot , language queries ℓ ∈ RM×Dlang

Layer params: k, q, v: linear projections for attention; pℓ:
projection for language query; GRU; MLP; LayerNorm (x3)

1: inputs← LayerNorm(inputs)
2: ℓproj ← pℓ(ℓ) ▷ Project M language queries to slot

dimension
3: {slots}Mi=1 ← ℓproj ▷ Condition first M slots on

language query
4: for t = 0 . . . T − 1 do
5: slotsprev ← slots
6: slots← LayerNorm(slots)
7: attn ← Softmax( 1√

D
k(inputs) · q(slots)⊤ axis =

slots)
8: updates ← WeightedMean(weights = attn +

ϵ, values = v(inputs))
9: slots← GRU(state = slotsprev, inputs = updates)

10: slots← slots + MLP(LayerNorm(slots))
11: end for
12: return slots

We present the modified Slot Attention with query-based
initialization in Algorithm 1.

Control Contrastive Loss For conditioning, we mainly
use language queries. However, we assume that each image
in our dataset consists of multiple object annotations, each
containing a center of mass annotation and a category or

referring expression annotation. Therefore, we have two
separate contrastive losses - one each for the language infor-
mation and the point information, as shown in Figure 2(b).

Conditioning We run Slot Attention for a fixed number of
slots K. However, in general, we may not have K queries
per image. In such cases, we initialize a subset of the slots
with the given queries, and the rest are free to bind to any
of the other objects in the scene (see line 3 of Algorithm 1).
When computing the contrastive loss, we only consider slots
conditioned on some query.

C. Training CTRL-O with Language Queries
Needing center of mass annotations for the contrastive loss
can be a limitation as these annotations may not be available
in many datasets. Further, the main baseline that we consider
for the referring expression segmentation task (Section 4.1)
- Shatter-and-Gather [23] - does not require center of mass
annotations. Therefore, for an apples-to-apples comparison,
we implement a variant of CTRL-O which does not require
center of mass annotations.

A visual depiction of this approach is presented in Fig-
ure 8. First, we remove additional center-of-mass informa-
tion and leave only language queries in the contrastive loss.
We find that simply removing the center-of-mass informa-
tion leads to collapse of representations as the contrastive
loss can be trivially satisfied by directly using the language
embeddings on which the slots are conditioned on - we
term this as leakage. To prevent leakage we propose to
use CLIP [39] image features and language embeddings in
the control contrastive loss. In particular, instead of taking
the weighted average of DINO features (Figure 2(a)), we
take the weighted average of patch-based CLIP features [12].
The slot conditioning still uses language embeddings from
LLaMa-3-8B [2], however, CLIP language embeddings are
used as targets in the contrastive loss. This way, CTRL-O
learns to bind to the correct regions in the image specified
by language queries without center-of-mass annotations.

D. Choice of Decoder for CTRL-O
In this subsection, we additionally study the compatibility of
CTRL-O with different previously proposed decoders. In
particular, we investigate the compatibility and scalability of
our method with two different decoder architectures (MLP
and Transformer). In Table 2, we compare our method with
other OCL methods, showing that while our method strongly
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Figure 6. Overview of DINOSAUR architecture. The image is processed into a set of patch features H by a frozen DINO ViT model. The Slot
Attention module groups the encoded features into a set of slots initialized by random queries sampled from the same Gaussian distribution
with learnable parameters. By contrast, CTRL-O is initialized by the combination of control queries for conditioned slots and random
queries for unconditioned slots. DINOSAUR is trained by reconstructing the DINO features from the slots using MLP decoder [42].

outperforms other methods in FG-ARI, its mask quality is
lower than methods with stronger (pretrained) diffusion and
Transformer decoders that have less inductive bias towards
scene decomposition. Thus, it is important to investigate how
our method performs with different decoders and whether
we can scale MLP decoders for better mask quality. Object
discovery with the Transformer decoder was shown to be
sensitive to hyperparameters and can entirely fail (see App.
D.4 and D.5 of DINOSAUR paper [42]). Subsequently, we
also find that CTRL-O with Transformer decoder achieves
10.2 mBO. Through thorough investigation, we conclude
that Transformer decoder is not compatible with contrastive
loss, which is needed for language controllability in CTRL-O
but not in the baselines. Thus, to improve masks quality we
propose to scale the MLP decoder itself; scaling MLP dim
to 4096 led to improved 28.0 mBO and 47.9 FG-ARI.

E. Referring Expression Visualization

In Figure 7, we compare the visualizations obtained from
CTRL-O (L+P setting), CTRL-O (L setting), and Shatter-
and-Gather (SaG). Note that the queries listed on the top of
each column are free-form queries created by a user and may
not be similar to those typically found in the visual genome
dataset. One potential issue with Shatter-and-Gather is that
the language queries do not influence the slot extraction
process - Slot attention first extracts a fixed number of slots,
after which the query binds to the most relevant slot post-
hoc. This can be limiting, as in some cases, the region
referred to by the query may not be extracted into a single
slot. In such cases, the language query may not bind to any
slot. In Figure 7, we find that this is exactly what happens in
several cases for Shatter-and-Gather. For example, in the first
column, for the query “The orange bag on the skier’s bag”,
SaG binds to the skier’s shoes. In the 5th column, SaG fails

to bind to any region for the query “the lamp”. In contrast,
both variants of CTRL-O frequently bind to the correct
regions specified by the queries. Secondly, in CTRL-O the
language queries directly influence slot extraction which
allows it to explicitly extract the referred regions from the
image and bind to them.

A particularly interesting case is the last row for
CTRL-O (L), where it learns to bind correctly even though
queries are less specific and more subjective - “the ancient
building” and “the new building”. This emphasizes the gen-
eralizability of CTRL-O to complex language queries.

F. Object Discovery and Binding Metrics
FG-ARI The adjusted rand index (ARI) measures the
similarity between two clusterings [19]. We use the in-
stance/object masks as the targets. We only compute this
metric for pixels in the foreground (hence, FG-ARI). Unla-
beled pixels are treated as background.

mBO To compute the mBO [38], each ground truth mask
(excluding the background mask) is assigned to the predicted
mask with the largest overlap in terms of IoU.The mBO is
computed as the average IoU of these mask pairs.

Binding Hits This metric measures controllable grounding.
For binding hits, consider that a slot si is conditioned on a
query Li identifying an object oi with ground-truth mask mi.
The broadcast decoder of slot attention outputs a mask per
slot. If the overlap between the predicted mask for slot si,
denoted as m̂i, and the ground truth mask mi is the highest
among all pairs of predicted and ground truth masks, it is
considered as a hit (1) else it is considered as a miss (0).
Binding Hits metric is measured as the average number of
hits across the dataset.
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Figure 7. Visualization Comparison In this figure we visualize and compare the masks obtained using CTRL-O (L+ P), CTRL-O (L),
and SaG when queried with free-form language queries. We can see that both the variants based on CTRL-O are significantly better at
binding to the correct region descriptions as compared to SaG. This difference can be attributed CTRL-O using the language guidance to
directly influence the slot extraction process while SaG considers the langauge to slot binding as a post-processing step after the slots have
been extracted. 3



Figure 8. Language-Only CTRL-O Overview of language-only training. In this setting, we use the frozen CLIP model to compute both
weighted CLIP slots and CLIP Language queries that we use in control contrastive loss. We average features from CLIP using attention
weights from the Slot Attention module.

G. Additional Details of VQA Experiments

Evaluation Metric. We evaluate VQA models using classi-
fication accuracy across 3000 classes, using the top-frequent
answers, which covers more than 90% of the question in the
dataset.

Discussion on Coupling in CTRL-O VQA model The
standard approach for solving VQA tasks with pretrained
vision and language backbones is to feed the output rep-
resentations of the vision model and the language model
into a single neural network - usually a Transformer [45] -
which then outputs a distribution over the answer categories
[8, 30, 31]. To solve VQA, it is crucial to have strong inter-
action between the visual and language inputs. However, in
pre-existing approaches, this interaction only happens in the
output network (the Transformer that processes the language
and vision outputs), which can be limiting.

To address this, we introduce an approach called coupling.
Coupling, with the help of CTRL-O, directly inserts the
visual representations into the language query, thus enabling
strong vision and language interaction from the input stage.
The proposed approach is presented in Figure 4(b).

H. CTRL-O SD

H.1. Fine-Tuning Details

In CTRL-O-SD, we finetune a pretrained
Stable Diffusion model initialized from the
stabilityai/stable-diffusion-2-1 check-
point. As illustrated in Figure 4(a), CTRL-O extracts slots
from a given image based on user-provided queries. These
extracted slots are then incorporated into the caption, which
is fed into Stable Diffusion. Notably, CTRL-O remains
frozen during the fine-tuning process, distinguishing our
approach from prior works like Slot Diffusion [48] and
Stable LSD [20], where the object-centric model and the
diffusion model are trained jointly.

Implementation Details We train the model on the COCO
2017 training set. For each image, we first extract COCO
categories from its associated caption and use these cate-
gories to query CTRL-O, to generate the corresponding
slots. These slots are subsequently appended to the cap-
tion, as shown in Figure 4(a). The resulting caption is then
passed through the CLIP language encoder to condition Sta-
ble Diffusion. To integrate CTRL-O outputs into the CLIP
language embedding space, we introduce a learnable linear
layer that maps the extracted slots to the CLIP embedding
space. During training, the only components updated are the
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U-Net parameters of Stable Diffusion. We use random flips
as a data augmentation strategy. Training is performed for
300 epochs with a learning rate of 2× 10−5, utilizing gradi-
ent accumulation with 2 steps. Additionally, we reproduce
Stable LSD using the author-provided code and hyperpa-
rameters on the COCO dataset. The input resolution to the
vision encoder for CTRL-O is 224×224, while Stable LSD
uses 448× 448.

H.2. Image Generation Metrics
Fréchet Inception Distance (FID) score We calculate the
Fréchet Inception Distance (FID) score [18] to assess the
quality of generated images in comparison to real images.
The FID score computes the Fréchet distance between fea-
ture distributions of generated and real images, extracted via
an Inception v3 model. Lower FID scores indicate a closer
match to real images, corresponding to higher image fidelity
and diversity.

CLIP-I Score We use CLIP-I Score to verify whether
the generated images contain the same instances present
in the query image. This should be the expected be-
havior of CTRL-O-SD when conditioned on a caption
containing slots corresponding to specific instances. We
compute this metric on the COCO validation set. We
embed the generated image and the query image into
the CLIP embedding space using the CLIP ViT Encoder
(openai/clip-vit-base-patch16). We then com-
pute the cosine similarity between the two embeddings. This
similarity is averaged across all images to compute the final
CLIP-I Score.

H.3. Image Reconstruction Visualization
In this section, we present a qualitative analysis of the recon-
struction capabilities of the LSD and CTRL-O-SD models.
The goal is to evaluate how effectively these models retain
structural and semantic details. LSD provides the full 7-slot
representation derived from the object-centric model to the
generative model, providing comprehensive image context
for reconstruction. In contrast, CTRL-O-SD provides the
caption along with only a subset of slots corresponding to
the categories in the caption to the generative model. To ob-
tain these slots, we condition the slots in CTRL-O with the
categories present in the caption and append the correspond-
ing slots to the caption. This flexibility in CTRL-O-SD
enables instance-specific image generation (see Fig. 5 for
examples), which is not feasible with Stable LSD. As il-
lustrated in Fig. 9, both models demonstrate comparable
reconstruction quality.

H.4. Image Generation Failures
In this section we highlight some failure cases of CTRL-O-
SD.

• Incorrect Focus: The model occasionally fails to accu-
rately prioritize the main objects in the query, often divert-
ing attention to irrelevant elements. For instance, when
prompted to generate an image centered around a cell
phone, the model might emphasize a person in the back-
ground instead. As we have seen from Table 1, CTRL-O
does not achieve perfect binding. Hence, this failure can
be caused by the slots not binding to the correct regions in
the image.

• Deformed Outputs: The model sometimes generates dis-
torted representations of people and animals, with unnatu-
ral proportions or malformed features. Such deformities
highlight limitations in the model’s ability to represent
detailed anatomy accurately, indicating a need for refined
control over complex shapes and structures. This failure
may also be attributed to the failures of the underlying
generative model rather than CTRL-O.

• Object Duplication: There are instances where the model
replicates objects within a single scene, leading to unreal-
istic and cluttered outputs.
These failure modes suggest areas for further improve-

ment for CTRL-O and CTRL-O-SD, particularly in ob-
ject binding for CTRL-O and image generation quality for
CTRL-O-SD.
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Figure 9. Image Reconstruction Qualitative comparisons of reconstruction outputs for LSD and CTRL-O-SD models. Each column
corresponds to a different image. Rows correspond to original inputs, LSD generations, and CTRL-O-SD generations respectively. LSD
generates outputs conditioned on full 7-slot representations derived from the original image, while CTRL-O-SD uses captions appended
with a subset of slots for conditioning. The results show that both models achieve similar reconstruction quality.
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Figure 10. Failure Modes of CTRL-O SD. Examples highlighting some failures in CTRL-O-SD such as incorrect focus, deformities in
representations of people or animals, and object duplication. Each labeled box illustrates specific instances of these failures.
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