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Mean Coreset TCA Encoded Ours Encoded† Ours†

(Condensed) Feature dimension d 2048 2048 256 256 256 256 256
Instance per segment K 1 1 1 8 8 full full

Sequence sampling ratio γ 1.0 1.0 1.0 0.5 0.5 1.0 1.0

Table A. Detailed experiment settings for the approaches in the main paper.
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Figure A. More video feature visualizations from the GTEA dataset. Each sub-figure is captioned by the corresponding video name.



A. Experiment Settings
Table A summarizes the detailed configurations of each ap-
proach presented in Tab. 1 in the main paper in terms of the
condensed feature dimension (d), the number of instances
per segment (K) and the sequence sampling ratio (γ). These
settings are chosen to vigorously ensure fair comparison be-
tween similar storage requirements.

B. TAS Loss Functions
Given a video X = {x1, ..., xT } of T frames long, popular
TAS works [2–4, 8] formulate segmentation as a classifica-
tion task to predict the action label for each frame, i.e.,

y1:T = (y1, y2, ..., yT ), (1)

where yt ∈ A is the action label for frame at time t. The
segmentation model is then trained with a frame-wise cross-
entropy loss:

Lcls(x, y) =
1

T

∑
t

− log(pt(yt)), (2)

where pt ∈ RA is the estimated action probability for the
frame xt. In addition, a smoothing loss is added to encour-
age smooth transitions between consecutive frames and mit-
igate the over-segmentation issue:

Lsm(x, y) =
1

TA

∑
t,a

∆̃2
t,a, ∆̃t,a =

{
∆t,a :∆t,a ≤ τ

τ :otherwise
,

(3)
∆t,a =

∣∣log pt(a)− log pt−1(a)
∣∣ .

τ is set to 4 as per [2]. The full training loss is a balanced
combination of the above two:

Ltas = Lcls + λ · Lsm. (4)

We set the trade-off parameter λ = 0.15 following most
existing works [2, 8].

C. Visualizations
Fig. A presents more visualizations of the original and gen-
erated video features with t-SNE [6] with videos from the
GTEA dataset. Most of the generated features are well-
aligned with the original.

D. Task Comparison
Table B highlights the key differences between two video
understanding tasks: action recognition (AR) and tem-
poral action segmentation (TAS). Several notable distinc-
tions emerge. First, AR models typically operate on raw
video frames, such as RGB frames or derived optical flow,

Task Input Data Input Dim Output Dim

AR RGB image RN×3×H×W R1×C

TAS I3D feature RT×D RT×C

Table B. Task Comparison between action recognition (AR) and
temporal action segmentation (TAS). N is the number of selected
input frames. H,W are the height and weight of the frame. T,D
are the temporal length and feature dimension of pre-computed
video features, respectively. C is the number of action classes.

whereas TAS models often utilize pre-computed frame fea-
tures. This choice facilitates easier access and ensures fair
comparisons across different methods [1]. Second, AR
models usually handle a fixed number of input frames. For
instance, C3D [5] splits videos into clips with a predefined
frame count, i.e., N = 16. In contrast, TAS models pro-
cess entire videos of varying lengths at their full tempo-
ral resolution, without subsampling. Lastly, the output di-
mensionality of these tasks also differs. AR models pre-
dict a single, global label for the entire set of input frames,
which is independent of the number of frames. On the other
hand, TAS models preserve the temporal resolution of the
input and produce frame-wise predictions, ensuring align-
ment between input and output dimensions. These distinc-
tions make the adaptation of existing work [7] to TAS non-
trivial and call for task-specific designs for the TAS dataset
condensation problem.
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