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A. Architecture
HomoGen features a two-stage pipeline that consists of
HPP and PCVDM. For more clarity, we detail the archi-
tectures of key components in HomoGen: 3D VAE, Lite-
ControlNet, 3D U-Net, and perceiver attention layers.
3D VAE. We only integrate temporal layers into the original
2D VAE decoder from Stable Diffusion [9] to improve the
temporal smoothness of generated videos. This modifica-
tion ensures that the distribution of the latent space remains
unchanged, where the latent variable is encoded from the
fixed 2D VAE encoder, thereby reducing the burden of sub-
sequent fine-tuning the 3D U-Net. We add a 1D temporal
residual block following each 2D spatial residual block in
the 3D VAE decoder. Additionally, we introduce a 1D tem-
poral self-attention block at the beginning of the decoder.
The hyperparameter settings for the 3D VAE refer to Tab. 1.
LiteControlNet. The proposed LiteControlNet extracts
multi-scale features from the latents of the priors derived
from HPP, built upon ControlNet [14] with a lightweight de-
sign. It stacks four 3×3×3 convolutional layers, where the
first one uses a stride of 1 and the last three use a stride of 2
for downsampling. Compared to ControlNet, LiteControl-
Net employs a single convolutional layer per latent scale,
structurally aligned with the corresponding latent scale in
the 3D U-Net encoder. Additionally, it removes the sam-
pling step as input, for which the prior features are com-
puted only once during sampling rather than at each step
as in ControlNet. The hyperparameter settings for LiteCon-
trolNet refer to Tab. 1.
3D U-Net. To extend the original 2D U-Net to a 3D U-
Net, we add a 1D temporal convolutional layer following
each 2D spatial convolutional layer in the original 2D resid-
ual blocks, thereby constructing pseudo-3D residual blocks.
Additionally, we introduce a 1D temporal self-attention
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block and a window-attention block after each 2D spatial
self-attention block in the 3D U-Net. A cross-attention
block is added after each window-attention block to inject
the GoP-wise CLIP latents into the 3D U-Net encoder. As
proposed in Sec. 3.3.2 of our main paper, the prior feature at
each scale is projected by a projector, i.e., a 1×1×1 convo-
lutional layer, then injected into and before each pseudo-3D
residual block in the 3D U-Net encoder. The hyperparame-
ter settings for the 3D U-Net refer to Tab. 1.
Perceiver Attention Layers. To extract spatiotemporal se-
mantics from OpenCLIP image embeddings, we employ
perceiver attention layers that iteratively distill inputs into a
tight latent bottleneck, enabling scalability for large inputs.
Four perceiver attention layers are stacked, each configured
with an embedding dimension of 1280, a query length of
256, and 64 attention head channels.

B. Various Prior Injection Strategies

In Sec. 4.3.2 of our main paper, we compare the pro-
posed content-adaptive control mechanism against alter-
native strategies, including pasting, concatenation, cross-
attention, and noise prior, for injecting homography-based
priors into PCVDM. Presented below are the detailed im-
plementations of the injection strategies under comparison.
Pasting. Pasting represents pasting the priors into the cor-
rupted regions directly before the corrupted video is fed
into PCVDM. Subsequently, the mask mp indicating the
regions of the propagated pixels, is downsampled by a fac-
tor of 8 and concatenated with the downsampled mask m,
the noised video latent zt, and the corrupted video latent z
in the latent space. These concatenated features are then fed
into the 3D U-Net.
Concatenation. Concatenation represents concatenating
the prior latent zp = E(xp) with downsampled mp, down-
sampled m, zt, and z in the latent space, which are then fed
into the 3D U-Net.



Table 1. Hyperparameters for the added layers in HomoGen, built upon the Stable Diffusion image inpainting model. Each element in “[∗,
∗, ...]” denotes the number of layers or blocks in the corresponding scale of the latent.

Models Hyperparameter Encoding Blocks Middle Blocks Decoding Blocks

3D VAE

Model channels / / 128
Temporal convolution channel multipliers / / [4, 4, 2, 1]
Temporal convolution kernel size / / 3
Temporal residual blocks / / [3, 3, 3, 3]
Temporal attention resolutions / / [4]
Temporal attention head channels / / 512
Temporal attention blocks / / [1, 0, 0, 0]

3D U-Net

Model channels 320 320 320
Temporal convolution channel multipliers [1, 2, 4, 4] [4] [4, 4, 2, 1]
Temporal convolution kernel size 3 3 3
Temporal residual blocks [2, 2, 2, 2] [2] [3, 3, 3, 3]
Attention resolutions [1, 2, 4] [4] [4, 2, 1]
Attention head channels 64 64 64
Window size in window-attention (h,w, t) (4, 7, 24) (4, 7, 24) (4, 7, 24)
Temporal attention blocks [2, 2, 2, 0] [1] [0, 3, 3, 3]
Window-attention blocks [2, 2, 2, 0] [1] [0, 3, 3, 3]
GoP-wise CLIP latent channels 1280 1280 /
Sampling step embedding channels 1280 1280 1280
Prior projector channel multipliers [1, 2, 4, 4] [4] /
Prior projector convolution kernel size (1, 1, 1) (1, 1, 1) /

LiteControlNet

Model channels 320 / /
3D convolution channel multipliers [1, 2, 4, 4] / /
3D convolution channel kernel size (3, 3, 3) / /
3D convolution layers [1, 1, 1, 1] / /

Cross-attention. Cross-attention represents injecting zp

into the 3D U-Net via a cross-attention block positioned af-
ter each window-attention block in the 3D U-Net encoder.
Noise Prior. Noise prior represents that zp is first scaled
by a coefficient λ and then added into the noise applied to a
GoP during both training and inference [11]. To determine
an optimal λ, we test values from 0 to 0.1 in increments of
0.02, ultimately setting λ to 0.02 for performance reporting.

C. Training and Inference Details

C.1. Training Configurations
We train the 3D VAE and the 3D U-Net separately. For
training the 3D VAE, we leverage pre-trained weights of the
2D VAE1 from Stable Diffusion as spatial weights. During
training, we fix the spatial pre-trained weights and optimize
the added temporal weights. For training objectives, we uti-
lize L2 loss as the reconstruction loss, i.e., Lrec, and LPIPS

1https://huggingface.co/stabilityai/sd-vae-ft-
mse

loss as the perceptual loss, i.e., Llpips. Additionally, to
improve the realism and temporal consistency of video re-
construction, we incorporate an adversarial loss, i.e., Ladv ,
which is measured using a T-PatchGAN discriminator [1].
The weights for Lrec, Llpips, and Ladv are set to 1, 0.1, and
0.01, respectively. The 3D VAE is trained on 4 NVIDIA
Tesla A100 (80G) GPUs, using the AdamW optimizer [5]
with a batch size of 8, setting the initial learning rate to
5× 10−6 and running 300k iterations.

For training the 3D U-Net, we initialize spatial weights
using pre-trained weights of the 2D U-Net2 from Stable Dif-
fusion v-2.0 image inpainting model. During training, we
fix the spatial pre-trained weights and optimize the added
weights. For the training objective, we utilize L2 loss as the
latent reconstruction loss. The 3D U-Net is trained on 16
NVIDIA Tesla A100 (40G) GPUs, using the AdamW opti-
mizer [5] with a batch size of 32, setting the initial learning
rate to 2× 10−5 and running 400k iterations.

2https : / / huggingface . co / stabilityai / stable -
diffusion-2-inpainting

https://huggingface.co/stabilityai/sd-vae-ft-mse
https://huggingface.co/stabilityai/sd-vae-ft-mse
https://huggingface.co/stabilityai/stable-diffusion-2-inpainting
https://huggingface.co/stabilityai/stable-diffusion-2-inpainting


Table 2. Examples of the text prompts generated for the DAVIS test set by GPT-4o.

Video ID Object Removal Video Completion

bear A rocky enclosure with large stones and green fo-
liage against a stone wall backdrop, with mulch
covering the ground.

A brown bear walks through a rocky enclosure
with a stone wall background, surrounded by fo-
liage and wood chips.

blackswan A lush green bank lines a calm river, reflecting the
surrounding foliage and creating a serene natural
scene.

A black swan gracefully glides through the water,
its reflection mirroring the lush green foliage on
the shore.

boat A serene coastal scene with clear blue water and
a hilly landscape in the background.

A white boat is speeding away from the rocky
shore with white houses in the background, cre-
ating a foamy wake in the calm blue sea.

car-roundabout A busy street corner in a city with parked cars,
buildings, and a directional road sign surrounded
by greenery.

A shiny black Mini Cooper speeds along a city
street corner with historic buildings and a mon-
ument in the background.

car-shadow A quiet urban intersection with a traffic light, un-
der a clear sky.

An urban street corner with a silver car turning
while a pedestrian crosses the crosswalk.

dance-twirl A group of people, including children, are seated
on hay bales and colorful stools, attentively
watching an outdoor event.

A dancer in a blue costume gracefully performs
before an audience seated on rows of benches,
against a backdrop of hay bales and planters.

dog A dry, patchy yard with scattered leaves, a wire
fence in the background, and a lush green bush on
the right side.

A dog speeds through an obstacle course, weaving
between red and white poles on a green field.

elephant A rocky outdoor enclosure with trees and a build-
ing in the background, surrounded by greenery
and boulders.

An elephant walks through a sandy enclosure,
kicking up dust with its massive feet, surrounded
by rocks and trees.

goat A rocky landscape with sparse vegetation and
rugged terrain, viewed from an elevated vantage
point.

A goat navigates a rocky mountainside, showing
its agility and balance in the rugged terrain.

We preprocess the original videos into GoPs as training
samples. Specifically, we sample 24 frames at 24 FPS to
form a GoP from each video in the training set. 60% of the
GoPs are established following the method proposed in Sec.
3.4 of our main paper, while 40% of the GoPs are selected
from segments of original videos, enabling learning without
temporal references for inferring the first GoP of a video.
Each frame is center-cropped and resized to 256× 448. We
divide each mask into an 8 × 8 grid and set all elements
within the grids containing the corrupted regions to 1, which
prevents information loss when the mask is downsampled
by a factor of 8 before being fed into the 3D U-Net.

C.2. Inference Details
During inference, we employ the EulerEDM sampler [8]
with 10 steps for conditional diffusion and classifier-free
guidance of magnitude 7.5. All videos in the test sets are
segmented into GoPs for sequential inference with the GoP
size of 24 frames, as proposed in Sec. 3.4 of our main pa-
per. Noverlap is set to 3. Following widely adopted pre-
processing strategies [4, 13, 16], we dilate the binary masks
m where 1 indicates corrupted regions and 0 indicates orig-

inally visible regions, to avoid edge information leakage.
We also divide each mask into an 8 × 8 grid and set all el-
ements within the grids containing the corrupted regions to
1. For fair comparisons with previous work, test videos are
sized with a spatial resolution of 240 × 432 and padded to
256× 448 by replicating edge values.

To address the absence of textual prompts in the test
sets, we employ GPT-4o [6] to generate the scene descrip-
tions of ideally inpainted videos. GPT-4o (“o” for “omni”)
is a multi-modal model with exceptional capabilities in vi-
sual understanding, language comprehension, and conver-
sational interaction. GPT-4o accepts any combination of
text, audio, image, and video as input prompts, and gen-
erates any combination of text, audio, and image outputs.
The text prompt generation process is akin to consulting a
sagacious expert with remarkable insight and knowledge.
Specifically, we brief GPT-4o about our objective to create
scene descriptions tailored for video inpainting and clearly
define our requirements. The prompt we used is as follows:

I am currently working on describing scenes
from corrupted videos and require your help.



Table 3. Quantitative comparisons of HomeGen with LiteControl-
Net and ControlNet.

Model PSNR SSIM VFID Runtime

w/ ControlNet 34.8237 0.97369 0.03225 0.3353
w/ LiteControlNet 34.8109 0.97352 0.03230 0.2718

For each video, I shall provide its central frame.
Based on the central frame, compose a descrip-
tion of the scene and disregard the gray areas rep-
resenting the corrupted regions covered by masks.
Focus solely on the scene, objects, and move-
ments. No more than 40 words.

Subsequently, we provide GPT-4o with the center frame of
each video, enabling it to generate the required descriptions.
Examples of the text prompts generated for the DAVIS test
set are presented in Tab. 2.

D. More Ablations
We conduct further ablation studies on the technologies em-
ployed in HomoGen, utilizing the YouTube-VOS dataset for
evaluation.

D.1. Study of LiteControlNet
As described in Sec. 3.3.2, we propose LiteControlNet,
which features a lightweight structure compared to Control-
Net. Here, we evaluate HomoGen with LiteControlNet or
ControlNet, and the results in Tab. 3 show that LiteCon-
trolNet achieves an 18.94% runtime reduction with minor
accuracy decreases. Runtimes (s/frame) are measured on
an NVIDIA Tesla A100 (40G) GPU.

D.2. Study of Excluding Masks of HPP Results.
As described in Sec. 3.2, mask mp indicating the regions
being propagated are derived from HPP. However, we sug-
gest excluding mp from PCVDM. As propagated regions
may carry distortions and are not always valuable, PCVDM
needs to learn to distinguish informative propagated content
from noise instead of directly using a mask to indicate valu-
able regions. We compare HomoGen with and without mp,
and the evaluation results in Tab. 4 show that excluding mp

leads to non-trivial performance improvements.

E. Practical Object Removal
To enhance HomoGen’s practicality in real-world applica-
tions, we introduce a practical object removal pipeline that
enables users to select and remove specific objects from
videos. Similar to previous designs [15, 16], our object re-
moval pipeline is divided into two stages: user-friendly an-
notation and sequential inpainting, as illustrated in Fig. 1. In
the user-friendly annotation stage, users interactively cre-
ate masks to mark the objects they wish to remove. On

Table 4. Quantitative comparisons of PCVDM with and without
mask mp

i indicating the regions being propagated in HPP.

Model PSNR SSIM VFID

w/ mask mp 34.43 0.9719 0.035
w/o mask mp 34.81 0.9735 0.032

the initial frame of each video, object regions are identi-
fied using Segment-Anything Model (SAM) [3] based on
user prompts, e.g., points, bounding boxes, rough masks,
etc. The segmentation is then extended across the entire
video using XMem [2] to ensure comprehensive object cov-
erage. For sequential inpainting, we employ the proposed
solution in Sec. 3.4 of our main paper for inpainting long
videos. Specifically, we first segment the entire video into
GoPs with an overlap of Noverlap that provides temporal
references and maintains temporal coherence. During pro-
cessing each GoP, the text prompts may either be provided
by the user or generated by GPT-4o using the center frame
of the GoP as detailed in Sec. C.2. Using the annotated
masks, text prompts, and the corresponding GoP, HomoGen
removes the specified objects, leaving behind clean and co-
herent backgrounds.

F. More Qualitative Results
We present additional visual comparisons of HomoGen
with ProPainter [16]. Fig. 2 and Fig. 3 present the com-
parisons of video completion performance on the YouTube-
VOS test set [12]. Fig. 4 and Fig. 5 present the comparisons
of video completion and object removal performance on the
DAVIS test set [7]. Fig. 6 and Fig. 7 present the compar-
isons of object removal performance on the RORD test set
[10]. As shown in Fig. 2 - 7, HomoGen can generate more
realistic and coherent content in the corrupted regions.
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Figure 1. Illustration of the pipeline for practical object removal.
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Figure 2. Qualitative video completion results on the YouTube-VOS test set. The ID of the showcased video is “4e1ef26a1e”.
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Figure 3. Qualitative video completion results on the YouTube-VOS test set. The ID of the showcased video is “cfd1e8166f”.
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Figure 4. Qualitative object removal results on the DAVIS test set. The ID of the showcased video is “elephant”.
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Figure 5. Qualitative video completion results on the DAVIS test set. The ID of the showcased video is “stroller”.
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Figure 6. Qualitative object removal results on the RORD test set. The ID of the showcased video is “I-210910 O12054 W04”.
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Figure 7. Qualitative object removal results on the RORD test set. The ID of the showcased video is “I-211003 I09032 T04”.
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