
Geometry in Style: 3D Stylization via Surface Normal Deformation

Supplementary Material

These sections provide additional results and more infor-

mation on our deformation method. Appendix A presents

qualitative results and comparisons in addition to those from

the paper. In Appendix B, we show an evaluation of CLIP

similarity to the prompt. In Appendix C, we perform an

ablation on the rotation-finding method and show the regu-

larization significance of the Procrustes local step. In Ap-

pendix D, we explain in detail the Cascaded Score Distil-

lation (CSD) semantic loss, introduced by Decatur et al.

[2], and provide the hyperparameters and configuration we

used. In Appendix E we provide extra clarifications on the

quantitative evaluation from the main paper. Finally, in Ap-

pendix F, we show a running time comparison of the global

step solves of dARAP and NJF [1].

A. Additional Qualitative Results

In Fig. 12 we present additional qualitative comparisons of

our method against MeshUp and TextDeformer. In the racer

bunny prompt, our method achieves the target style with

most fidelity. In the pagoda prompt, TextDeformer pro-

duces artifacts and achieves less satisfactory style; MeshUp

achieves the target style but aggressively transforms the

shape beyond recognition from the source, losing its iden-

tity. Our method achieves the pagoda style and retains the

original vessel-and-column configuration. In the cybernetic

glove example, our method achieves the target style cleanly

and preserves the slender proportions of the source hand.

In Fig. 13, we add to Fig. 5 in the main paper with an-

other example showing the same shape deformed with dif-

ferent style prompts, here a person shape. All three exam-

ples show salient features of the style but preserve the slen-

der proportions of the original shape.

In Fig. 15 we present additional results of our method

on select quadruped animal meshes from the SMAL model

[8] (the image-fitting result meshes presented in their work)

paired with diverse prompts.

B. CLIP Similarity to Prompt

We computed the CLIP similarity between rendered images

of the deformed mesh and the stylization text prompt. Our

evaluation on the 20-shape set (the same set evaluated quan-

titatively in the main paper) using 16 views per mesh shows

(Tab. 2) that we obtain better semantic similarity to the spec-

ified style prompt compared to MeshUp [4] and TextDe-

former [3].

TextDeformer MeshUp Ours

ViT-B/16 CLIP sim. (↑) 0.650 0.653 0.655

Table 2. Our method achieves better CLIP similarity to the prompt

than TextDeformer and MeshUp.

C. Ablations

Rotation-finding method. In Fig. 14, we compare

choices of the local rotation-finding method. Our local step

using a Procrustes solve, which finds a rotation matrix for

each vertex given a target normal, is inherently regularized

by virtue of finding a best-fit rotation for not only the source

normal but also a neighborhood of edge vectors (Fig. 4).

Without this Procrustes solve, one might directly opti-

mize per-vertex rotations (e.g. using the continuous 3 × 2
matrix representation described in Zhou et al. [7]). How-

ever, we show in Fig. 14 that this, without identity regu-

larization loss, is far less restrictive than our target-normal-

a 3d render of a racer bunny

a 3d render of a pagoda

OursMeshUpTextDeformer
Source
mesh

a 3d render of a cybernetic glove

Figure 12. More qualitative comparisons with MeshUp and

TextDeformer. Note that TextDeformer contains artifacts and

noisy surface detail, and MeshUp either fails to attain the prompt

style, or deforms the shape beyond recognition and loses the

source shape’s identity. Our method attains the target style and

preserves the source shape’s identity.

a 3d render of an A-pose...

Chinese
terracotta warrior

balloon
person

samurai warrior in
traditional armor

Figure 13. Another example of deforming the same mesh towards

different text-specified styles.

a 3d render of a sphinx

Procrustes λ = 8 No Procrustes
(Directly optimizing rotations)Procrustes λ = 10

Figure 14. Rotation ablation. Our Procrustes solve preserves

identity even at different values of λ (tunable to taste). Directly

predicting rotations is not restrictive enough and severely changes

shape identity.

based local step and loses the identity of the source mesh,

undesirable for our goal of stylization.

Further, our Procrustes solve hyperparameter λ can be

chosen (for optimization) to add additional detail yet still

preserve identity to taste. Fig. 14 shows that the stylization

is visible yet preserves the identity of the source dog mesh

for both λ = 8 and λ = 10. In particular, the squared feet

and sharper angle of the neck are prominent in both, with

λ = 8 preserving the front leg pose better, while λ = 10
having stronger sphinx-like feet. We use λ = 8 in the main

results as it strikes a good balance of identity preservation

and strength for most meshes, but this can be tuned on a

per-mesh basis. Additionally, as shown in Fig. 8, λ can also

be changed at inference/application time to further adjust a

pre-optimized deformation’s strength.

D. Cascaded Score Distillation (CSD)

D.1. Method

In this section, we briefly describe how Cascaded Score

Distillation is used to optimize the target vertex normals

Û = {ûk | k ∈ {1 . . . |V|}}. We first provide an overview

of how Score Distillation Sampling (SDS) can be applied

to optimize a deformation quantity (e.g. jacobians, or target

normals in our case) using diffusion models, and extend the

concept to show how we use Cascaded Score Distillation as

our guidance. See Fig. 16 for an illustrative overview.

To stochastically optimize parameters (target normals in

our case) with respect to a pre-trained 2D diffusion model,

Poole et al. [5] proposed Score Distillation Sampling (SDS),

where given a rendered image z and a text condition y, the

objective is to minimize the L2 loss

 \mathcal {L}_{\text {Diff}}(\omega , \mathbf {z}, y, \epsilon , t)=w(t)\left \|\epsilon _\omega \left (\mathbf {z}_t, y, t\right)-\epsilon \right \|_2^2, (8)

which is the L2 difference between the sampled noise

ϵ ∼ N (0, I) added to the image, and the noise ϵω pre-

dicted by a denoising U-Net ω at some timestep t, sampled

from a uniform distribution t ∼ U(0, 1). Here, w(t) is a

weighting term, and \protect \mathbf {z}_t is the rendered image, noised ac-

cording to the sampled timestep t. To compute the gradient

of the optimizable parameters, which in our case is the set

of all target normals uk with respect to the loss LDiff , it has

been shown that the gradients of the U-Net can be omitted

for efficient computation [5, 6], giving

 \nabla _{\uu _k} \mathcal {L}_{\mathrm {SDS}}(\phi , \mathbf {z}, y, \epsilon , t) = w(t) \left (\epsilon _{\omega }(\mathbf {z}_t, y, t) - \epsilon \right) \frac {\partial \mathbf {z}_t({\uu _k})}{\partial \uu _k}. \label {eq:sds}

(9)
∂zt(uk)
∂uk

can be obtained by backpropagating the gradient

from the rendered images through our fully differentiable

pipeline, and using ∇uk
we can optimize the target normals

with text-to-image diffusion models.

Cascaded Score Distillation is an extension of SDS that

allows our parameters to be optimized with additional guid-

ance from super-resolution models. While SDS only ap-

proximates the gradients from the first stage, base diffusion

model, CSD utilizes the super-resolution models (usually

2nd or 3rd stage models), which are additional models used

to upsample and fine-tune low-resolution images generated

by the base model. This additional guidance from high-

resolution modules allows for a more fine-grained genera-

tion of stylistic details in our results, making it an appropri-

ate choice for our

To use Cascaded Score Distillation as our guidance, we

add the gradient,

 \begin {split} \nabla _{\uu _k} \mathcal {L}_{\mathrm {CSD}_i}&(\phi ^i, z^i, z^{i-1}, y) =\\ &w(t) \left (\epsilon _{\phi ^i}(z_t^i, t, z_s^{i-1}, s, \mathbf {y}) - \epsilon ^i \right)\frac {\partial \mathbf {z}_t({\uu _k})}{\partial \uu _k}, \end {split}

(10)

where the idea is to use an image upsampled at the reso-

lution of the ith stage module, zi, along with the image of

the resolution of the previous i − 1th stage module, zi−1,

and noise them respectively at timestep t and s to use them

as inputs to the ith stage high-resolution module. Likewise

for SDS, we omit the expensive computation of the gradient

through the U-Net and calculate the gradient with respect to

a 3d render of a(n)...

plush dog plush fox plush horse poodle
steampunk

mechanical horse

hippo made of bricks
alligator-skin

hippo
robotic

armored hippo
medieval armored

battle hippostegosaurus hippo-themed
hot dog

medieval
armored cow

Figure 15. Diverse prompts on SMAL [8] quadruped animals. For a variety of animals, the deformation imparts the requested style but

preserves the general pose. Even in cases where the prompt’s identity is different (e.g. poodle, stegosaurus, hot dog), our method works

with the existing geometry and keeps its identity, effectively stylizing the original shape to look like the target object rather than overriding

the source shape and growing a distinct body.

our target normals by backpropagating through our differ-

entiable pipeline.

Combining the gradient from SDS with CSD gives us the

following final gradient,

 \label {eq:csd} \begin {split} \nabla _{\uu _k} \mathcal {L}_\mathrm {CSD}&(\phi , \mathbf {z}, y, \epsilon , t) =\\ &\alpha ^1 \nabla _{\uu _k} \mathcal {L}_\mathrm {SDS} + \sum _{i=2}^N \alpha ^i \nabla _{\uu _k} \mathcal {L}_\mathrm {CSD_i}(\phi ^i, z^i, z^{i-1}, \mathbf {y}) \end {split}

(11)

where αi are the user-defined weights for each gradient.

D.2. Configuration Details

CSD settings. Recall that an epoch in our optimization

pipeline consists of a batch of randomly sampled views (we

use a view batch size of 8) fed to CSD. Apart from the base

model for SDS, we only use one upscaling stage of Deep-

Floyd IF (i.e. N = 2 in Eq. (11)) The weight α2 of the

CSD second-stage is linearly ramped up from 0 to 0.2 over

the course of 1000 epochs, then 0.2 to 0.3 over 750 epochs,

remaining at 0.3 for the rest of the epochs. The weight α1

for SDS is a constant 1.0. We use a classifier-free guidance

weight of 100 as in MeshUp [4].

For each batch of rendered views we compute the CSD

loss, backpropagate, and perform a gradient descent update

on Û twice before recomputing the deformed shape and re-

rendering it for the next epoch/batch of views. This tech-

nique was also used in the official MeshUp implementation

and empirically leads to sharper deformations.

View sampling settings. The renders sample from a

range of views around the mesh: a full azimuth range of

0◦ to 360◦, an elevation range of 0◦ to 60◦ (or 30◦ for tall

and slim shapes such as humans), a distance range of 2.5 to

3.0 for most shapes (or 1.4 to 2.6 for tall and slim shapes

such as humans), and a fixed FOV of 60◦.

E. Additional Quantitative Evaluation Details

We provide additional details and explanations about the

quantitative evaluation reported in Tab. 1 in the main paper.

For an informative comparison, we normalize the source

shape to fit a side-2 cube centered at origin, and rescale

the deformed shape to share the same axis-aligned bound-

ing box diagonal length as that of the normalized source

shape. We use this pre- and post-normalization as it is the

same scheme used before and after deformation in MeshUp

and our method. This normalization means the face area ra-

tio will measure two effects: the first is any localized face

area distortion to accommodate a deformation, and the sec-

ond is if the deformation (before normalizing) significantly

enlarges the shape’s bounding box even if there is no sig-

nificant localized distortion (e.g. when a limb is rotated to

spread out further). When the latter case happens, after the

normalization, the area ratios will be smaller than 1 due to

a global rescaling down to fit the original bounding box ex-

tent, and vice versa.

In addition to the average and standard deviation of the

area ratio reported in the main body, we further show the

Source renders

low
resolution

high
resolution

+ stage 1
U-Net

stage 2
U-Net

stack
channels

Noised renders Predicted noise & loss

a 3d render of a cute
animal-themed chair

L2 loss

L2 loss

+ Final
semantic

loss

+

upscale

Figure 16. Overview illustration of the Cascaded Score Distillation semantic loss. Two-stage CSD uses two pretrained denoising

U-Nets to predict the noise for the noised renders at their corresponding resolutions. The higher resolution stage incorporates an upscaled

noised render from the low-resolution branch.

distribution of the area ratio in Fig. 17. Interestingly, we

see that the distribution for TextDeformer [3] is mainly cen-

tered around values smaller than 1, suggesting that TextDe-

former tends to enlarge the source shape’s extents as a

whole (resulting in a global shrinkage upon normalizing),

while for MeshUp [4] the behavior is the other way around.

In contrast, the distribution for our method is cleanly lo-

cated around a ratio of value 1, indicating better triangle

area and bounding box preservation compared to the other

methods.

F. Running Time

We compare the running time of dARAP against the equiv-

alent in NJF [1]. Since faces approximately outnum-

ber vertices 2:1 on simplicial surfaces, our vertex-based

global solve is faster than NJF’s face jacobian-based solve

(0.0507s vs. 0.0755s average). Even combined with our lo-

cal step, the two methods are comparable in run time; see

the supplementary material for measurement details.

We compare in Tab. 3 the running time of dARAP

against the equivalent in NJF [1]. Averaged over 10 runs

on a mesh with 20708 faces and 10356 vertices on a GTX

1660Ti GPU, excluding the precomputations of both meth-

ods, our Poisson system construction and solution is faster

than that of NJF, owing to the fact that faces usually out-

number vertices 2:1 on simplicial surfaces. While NJF does

not involve a local step, even coupled with the local step,

our local-global dARAP altogether has a comparable run-

ning time to an NJF Poisson solve.

0.0 0.5 1.0 1.5 2.0

(deformed / source) face area ratio

0.00

0.02

0.04

0.06

re
la

ti
v
e

fr
eq

u
en

cy
TextDeformer

0.0 0.5 1.0 1.5 2.0

(deformed / source) face area ratio

0.00

0.02

0.04

0.06

re
la

ti
v
e

fr
eq

u
en

cy

MeshUp

0.0 0.5 1.0 1.5 2.0

(deformed / source) face area ratio

0.00

0.02

0.04

0.06

re
la

ti
v
e

fr
eq

u
en

cy

Geometry in Style (ours)

Figure 17. Distribution of (deformed / source) face area ratios.

n = 306300 faces across 20 source-deformed mesh pairs.

Method Local step Global step Total

NJF [1] Poisson — 0.0755s 0.0755s

dARAP (ours) 0.0412s 0.0507s 0.0918s

Table 3. Running time comparison against NJF. Since faces

outnumber vertices 2:1 on simplicial surfaces, our vertex-based

global solve is faster than NJF’s face jacobian-based solve. Com-

bined with our local step, the two methods are on par in run time.

References

[1] Noam Aigerman, Kunal Gupta, Vladimir G. Kim, Siddhartha

Chaudhuri, Jun Saito, and Thibault Groueix. Neural jacobian

fields: learning intrinsic mappings of arbitrary meshes. ACM

Trans. Graph., 41(4), 2022. 1, 4, 5

[2] Dale Decatur, Itai Lang, Kfir Aberman, and Rana Hanocka.

3d paintbrush: Local stylization of 3d shapes with cascaded

score distillation. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 4473–4483, 2024. 1

[3] William Gao, Noam Aigerman, Thibault Groueix, Vova Kim,

and Rana Hanocka. Textdeformer: Geometry manipulation

using text guidance. In ACM SIGGRAPH 2023 Conference

Proceedings, pages 1–11, 2023. 1, 4

[4] Hyunwoo Kim, Itai Lang, Noam Aigerman, Thibault Groueix,

Vladimir G Kim, and Rana Hanocka. Meshup: Multi-

target mesh deformation via blended score distillation. arXiv

preprint arXiv:2408.14899, 2024. 1, 3, 4

[5] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Milden-

hall. Dreamfusion: Text-to-3d using 2d diffusion, 2022. 2

[6] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A. Yeh,

and Greg Shakhnarovich. Score jacobian chaining: Lifting

pretrained 2d diffusion models for 3d generation, 2022. 2

[7] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao

Li. On the continuity of rotation representations in neural net-

works. In Proceedings of the IEEE/CVF conference on com-

puter vision and pattern recognition, pages 5745–5753, 2019.

1

[8] Silvia Zuffi, Angjoo Kanazawa, David Jacobs, and Michael J.

Black. 3D menagerie: Modeling the 3D shape and pose of an-

imals. In IEEE Conf. on Computer Vision and Pattern Recog-

nition (CVPR), 2017. 1, 3

	Additional Qualitative Results
	CLIP Similarity to Prompt
	Ablations
	Cascaded Score Distillation (CSD)
	Method
	Configuration Details

	Additional Quantitative Evaluation Details
	Running Time

