
ViiNeuS: Volumetric Initialization for Implicit Neural Surface reconstruction of
urban scenes with limited image overlap

Supplementary Material

In this supplementary material, we provide additional
implementation details, experiments with Neuralangelo [6]
and additional quantitative and qualitative results. Further-
more, an ablation study on our samples attribution strategy,
applications, and failure cases of ViiNeuS are also provided.

1. SDF-gradient normalization

As explained in Sec. 3.3 of the main paper, volumetric rep-
resentations based on density estimation tend to quickly
approximate saturated alpha values (αv

i being either 0 or
1), while alpha values computed from the SDF converge
slower. Because αv

i and αf
i are composed jointly during

the hybrid stage, we noticed that the surface representation
compensates for this gap by predicting large SDF gradients
so that αf

i aligns with αv
i . Indeed, from Eq. 3 of the main

paper, a solution to saturate alpha towards either 1 or 0, is to
predict f(pi+1) ≪ f(pi) or f(pi+1) ≫ f(pi), respectively.
During the forward pass, f(pi) and f(pi+1) are not directly
predicted by the model but rather computed using:

f(pi) = f(xi) + Relu(− cos(θ))× δi
2
,

f(pi+1) = f(xi)− Relu(− cos(θ))× δi
2
,

(1)

with θ being the angle between the direction of ∇f(xi) and
the ray direction d. Practically, we do not formally com-
pute θ but we rather approximate its cosine with cos(θ) =
∇f(xi) ·d, assuming both vectors are unit norm. By pre-
dicting ∥∇f(xi)∥2 ≫ 1, αf

i can be easily saturated and fol-
low the distribution of αv

i without learning a proper signed
distance field. To address this, we simply normalize the
SDF gradient before the cosine computation to prevent the
gradient from compensating the alpha distribution differ-
ence. It is important to notice that even if the eikonal loss
used for training (see main paper) is supposed to encourage
the network to model a signed distance function with spatial
derivative of unitary norm, we found that numerically nor-
malizing the gradient during our hybrid stage is essential to
avoid divergence in early training iterations.

2. SDF Field Initialization: Neuralangelo

As detailed in the main paper, Neuralangelo [6] is designed
for landmark reconstruction, relying on many overlapping
images and a bounded region of interest to initialize the
SDF with a spherical shape. In our initial tests, when apply-
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Figure 1. Qualitative experiments results on Seq. 30 (a) and Seq.
31 (b) from KITTI-360s [7]. Failure on Seq. 10061 (c) Waymo
Open Dataset [11]. We compare our generated SDF mesh to Neu-
ralangelo [6] mesh for KITTI-360. We report the experiments on
the full and segmented sequence for Waymo.



ing Neuralangelo (using the official authors codebase 1) to
outdoor driving scenarios using the default settings for out-
door scenes, we observed that the initial part of the scene re-
mained noisy and retained a spherical shape. Only the final
part of the scene, which was consistently visible across all
images in the sequence, was accurately reconstructed (see
Fig. 1a). While Neuralangelo managed to reconstruct some
parts of simpler scenes, such as in Seq. 31 from KITTI-360
(Fig.1b), it failed completely in more complex cases, par-
ticularly in sequences that are long, wide, or contain chal-
lenging structure like downhills (e.g., Seq. 30 in Fig.1a).
Moreover, Neuralangelo was unable to reconstruct any part
of the Waymo dataset, as shown in Fig. 1c. Given these
outcomes, we conducted extensive experiments with Neu-
ralangelo using various training strategies:
• Constraining the spherical shape: since Neuralangelo re-

lies on a spherical initialization where everything outside
the sphere is treated as background, we attempted to cen-
ter the sphere on a smaller region, with a smaller radius.
However, this approach resulted in very noisy reconstruc-
tions, likely due to insufficient overlapping images in that
part of the scene (inside the sphere).

• Segmenting the scene into multiple parts: acknowledging
that driving sequences are typically long and wide, we
divided the scenes into smaller segments to better fit the
spherical initialization. This strategy, however, produced
unsatisfactory results. Neuralangelo requires a large num-
ber of images (typically 300 for an average Tanks and
Temples scene covering the same region of interest) while
KITTI-360 sequences contain around 200 images (ap-
proximately 50 per camera) and after segmentation, each
part of the scene had roughly 100 images. The method
could only reconstruct the final segment of the scene that
was visible in all images (see Fig. 1c).

• Doubling the number of images: we further experimented
with doubling the number of images used in the recon-
struction. Unfortunately, this did not help the method to
converge to a satisfactory reconstruction.

Despite various training strategies, Neuralangelo failed to
produce reliable reconstructions for complex driving se-
quences. It requires a large number of overlapping images
and a tightly bounded scene, making it unsuitable for un-
bounded driving sequences. Additionally, Neuralangelo’s
training time is prohibitively long, taking up to 24 hours per
scene. This, combined with its poor performance on driv-
ing sequences, makes it impractical for large-scale driving
scene reconstruction tasks.

3. Comparison to feed-forward SfM solutions
To complete our extensive evaluation, we evaluated a feed-
forward SfM solution designed for joint pose estimation

1https://github.com/NVlabs/neuralangelo

Table 1. Quantitative evaluation results of Dust3r [12] on Waymo
dataset.

Dust3r ViiNeuS

Seq. 10061 1.13 0.22
Seq. 13196 0.93 0.29
Seq. 14869 0.98 0.17
Seq. 102751 0.92 0.23

Dust3r [12] ViiNeuS (ours)

Figure 2. Point-cloud Seq. 13196 from Waymo.

and dense scene reconstruction rather than surface recon-
struction. This method does not generate scene meshes or
rely on precomputed poses for geometry estimation. We
tested DUSt3R [12] using prior poses and camera intrinsics
to obtain a dense point cloud. DUSt3R required 24GB of
memory for depth map alignment with 60 downsampled im-
ages, necessitating a split into five chunks per sequence. Its
output contained poor-quality results with duplicate content
(qualitative comparisons in Fig. 2). We report the Chamfer
distance between LiDAR and the predicted point cloud for
DUSt3R and ViiNeuS in Tab. 1.

4. Additional implementation details

We use the poses provided by the datasets, except for
Waymo, where we recompute the vehicle trajectory and
sensor calibration with MOISST [5] due to inaccuracies in
the provided data. The overall loss we use to optimize Vi-
iNeuS is defined as follows:

L = Lrgb + λ1Ldssim + λ2LN̂ + λ3Leik + λ4Lsky. (2)

We set λ1, and λ4 to 0.1 and 0.01, respectively. We fix λ2 to
0.05 for planar classes and 0.01 for non planar classes. We
set λ3 to 0.01 in the first training iterations, then we adjust
it to 0.1 in the last iterations.
We report in table 2 the hash grid encoding parameters
from Instant-NGP [9]. We summarize the split of KITTI-
360 [7] sequences used for our evaluations in table 3. We
use all four cameras for KITTI-360 [7], and the three front
cameras for Pandaset [13], nuScenes [1] and Waymo Open
Dataset [11]. We sample one image out of two for KITTI-
360, and one image out of 8 for the other datasets.
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Figure 3. Mean cumulative delta error for both ViiNeuS and StreetSurf computed across the four sequences from each dataset as detailed
in Tab. 1 of the main paper. Curves indicate the percentage of ground-truth points having an error distance to the closest predicted mesh
triangle which is lower than a given value. Light contours represent the standard deviation for each method.

Table 2. Hash grid encoding parameters

Parameter Value

Table size 219

Finest resolution 2048
Coarsest resolution 16
Number of level 16

Table 3. Selected KITTI-360 sequences

Seq. KITTI Sync. Start End # frames per cam.

30 0004 1728 1822 48
31 0009 2890 2996 54
35 0009 980 1092 57
36 0010 112 166 28

Table 4. Mean photometric results for each dataset

KITTI Pandaset nuScenes Waymo

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

StreetSurf 24.04 0.83 22.24 0.66 22.28 0.76 23.42 0.77
GOF 23.34 0.86 25.54 0.87 20.92 0.81 19.13 0.76
ViiNeuS 24.83 0.89 22.95 0.80 21.96 0.83 23.74 0.87

5. Additional results
5.1. Photometric results
We report the mean PSNR and SSIM for each dataset in
Tab. 4. Our method shows comparable results to StreetSurf
and GOF.

5.2. Additional quantitative results
We report in Fig 3 mean cumulative delta error and stan-
dard deviation computed across the four sequences from
each dataset for both SDF methods. As it can be observed,
our method’s cumulative errors are consistently lower in all
datasets for distances below 40cm. We additionally show
the standard deviation of the error computed along all se-
quences and notice that our errors remain consistent across
the different scenes in contrast to StreetSurf.

5.3. Additional qualitative results
We report in Fig.4 additional qualitative results on
nuScenes [1] and Waymo Open Dataset [11]. We find that
ViiNeuS reconstructs higher-quality surfaces compared to
StreetSurf and can recover many scene details (see high-
lighted red-boxes on the figures).

5.4. Ablation study
We ablate the effect of random sample attribution and our
proposed probability-based samples attribution. The quali-
tative results at various training steps are presented in Fig.5.
The results demonstrate that ViiNeuS samples attribution
strategy initially learns the coarse geometry of the scene
during early training stages. While random sample attribu-
tion can approximate an accurate SDF representation by the
end of the hybrid stage, it results in an incomplete mesh
compared to the mesh generated using probability-based
sample attribution.

6. Applications
6.1. Textured mesh
Due to the high-quality of ViiNeuS’s reconstructed sur-
faces, we can leverage modern Multi-View Stereo (MVS)
tools like OpenMVS [8] to produce detailed and colorized
representations of driving sequences. As shown in Fig. 6,
we find that ViiNeuS’s textured mesh is more complete and
accurate compared to StreetSurf’s textured mesh.

7. Limitations
Although ViiNeuS’s reconstructed surfaces are highly de-
tailed and accurate, we find that our method can fail in three
distinct scenarios:
• Disentangling fine details from the sky: unlike Street-

Surf [4], which models close range, far range, and sky
separately, ViiNeuS separates only the sky from the other
scene’s modeling. However, ViiNeuS may struggle to
distinguish fine details from the sky, particularly in cases
where objects are thin, as shown in Fig. 7.
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Figure 4. Qualitative experiments results on (a) KITTI-360s [7], (b) Pandaset [13], (c) nuScenes [1] and (d) Waymo Open Dataset [11].
We compare our mesh extracted from our SDF to GOF, COLMAP, OpenMVS and StreetSurf meshes.
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Figure 5. Ablation study: we ablate the effect of random samples attribution compared to our probability-guided attribution introduced in
section 3.3 of the paper. We show the rendered meshes results of the sequence 023 of Pandaset [13] at (a) 1.2k steps, (b) 3.6k steps, (c) 6k
steps, and (d) 14k steps.
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Figure 6. We use OpenMVS [8] to assign texture to the outputted meshes. We compare our colored mesh to StreetSurf [4], for the sequence
102751 from Waymo Open Dataset [11].

• Fine details in wide sequences: ViiNeuS sometimes fails
in accurately reconstructing scene details in wide and
open sequences, such as scene 23 from Pandaset reported

in Fig. 8.
• Inaccurate road reconstruction: for sequence 664 from

nuScenes (see Fig. 9), ViiNeuS faces challenges in re-
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Figure 7. Failure case of ViiNeuS for the sequence 31 from KITTI-
360 [7]. We report the ground-truth RGB image and the predicted
sky mask. In a different point-of-view than the GT RGB, we com-
pare our generated SDF mesh to StreetSurf’s mesh.

(a) RGB (b) RGB highlighted

(c) ViiNeuS (ours) (d) StreetSurf [4]

Figure 8. Failure case of ViiNeuS for the sequence 23 from Pan-
daset [13]. We report the ground-truth RGB image and the wide
part of the sequence highlighted. In a different point-of-view than
the GT RGB, we compare our generated SDF mesh to StreetSurf’s
mesh.

constructing the road due to inaccuracies in the monoc-
ular normal prediction from Omnidata [3]. In compari-
son, StreetSurf [4] demonstrates more accurate road re-
construction, attributed to its road-surface initialization.

8. Supplementary video
We show in the supplementary video ViiNeuS’s meshes
compared to GOF [14] and StreetSurf [4] on one sequence
from each of the four evaluated datasets. All meshes were
visualized with Blender [2] by animating the camera tra-
jectory to generate the videos. GOF [14] meshes are in-
complete at the beginning of scenes and very noisy, as the
method is designed for landmark reconstruction and does
not address the challenges of driving sequences, such as low
image overlap, off-centered regions of interest, the need to
handle both close and far-range objects across a wide range

(a) RGB (b) Monocular normal

(c) ViiNeuS (ours) (d) StreetSurf [4]

Figure 9. Failure case of ViiNeuS for the sequence 664 from
nuScenes [1]. We report the ground-truth RGB image and the
monocular normal. In a different point-of-view than the GT RGB
we compare our generated SDF mesh to StreetSurf’s mesh.

of distances, and sky modeling. In addition, in the sky re-
gion and empty spaces that are commonly found in driving
scenes, GOF tends to create triangles from noisy Gaussians.
While the explicit 3DGS formulation is tailored for sparse
scenes, it cannot effectively manage the inherent complexi-
ties introduced by the specific sensor configurations in driv-
ing sequences.
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