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6. Toy Dataset

To illustrate the efficiacy of IRS we propose an experiment
with a toy dataset. Specifically, we compare how IRS can
be used to measure the inter and intra-class diversity. We
model the two-dimensional distribution as a multi-modal
Gaussian. The real dataset has six classes and five sub-
classes. We model synthetic diversity by progressively re-
moving modes from the synthetic dataset. The results can
be seen in Fig. 6. For both experiments the IRS→,a score is
very close to the real value.

Figure 6. Inter and intra class diversity according to IRS on a toy
dataset. The real pdf is shown in the background. Blue means high
likelihood. We use 1000 each of real, test, and synthetic samples.

7. Model Rejection Based on IRS

Building on the methodology introduced in the main paper,
we explore how IRS can provide additional insights into
model diversity during training. IRS, which requires a min-
imal number of samples for computation, proves to be par-
ticularly useful for online evaluation methods such as reject-
ing early model checkpoints that lack sufficient diversity.
This appendix analyzes IRS-based rejection through exper-
iments, providing practical examples and additional inter-
pretation of its efficacy. By defining a target diversity per-
centage IRSd , we can leverage IRS to monitor progress to-
wards achieving this goal. The core question IRS addresses
is: ’How many images learnt from different training sam-
ples kminwill a model with this level of diversity generate at
minimum?’ To calculate this, we take Eqs. (7) and (8), and
look for the minimum expected number of different learned
images kmin:

Figure 7. Detecting low diversity models. By leveraging the statis-
tical properties of the training dataset, we can assess the diversity
of the model during the sampling process. A low diversity model
will saturate earlier and can be rejected quickly. In this example,
we would reject the low diversity model after only generating 60
samples.

kmin = arg max
k

∑

k

P(k, Nsample, IRSd → Ntrain) < ωe

(9)
Fig. 7 illustrates this using a toy example with 800 distinct
training values. To get ground truth values for diversity,
we simulate generation as random sampling from a set of
integers. As shown in Fig. 7, a toy example with 800 train-
ing images demonstrates how low-diversity models quickly
converge to a high number of duplicates. By sampling as
few as 60 images, we can confidently reject models failing
to meet the diversity threshold. This highlights IRS as a
reliable tool for early-stage model evaluation.

We additionally investigate the efficacy of IRS by exam-
ining its accuracy according to Eqs. (6) to (8). Figure 8
illustrates how predicted IRS values vary with model diver-
sity. The initial estimate with ω = 0.01, which evaluates
the diversity of 1/100 → Ntrain samples, is reasonably close
to the true value, but its confidence level suggests this may
be due to chance. At ω = 0.1 the estimates become increas-
ingly confident around the ground truth value.

Next we illustrate the probability distribution function
and cumulative density function for five different training
sizes in Fig. 9. The example uses the real formula for Stir-
ling’s number of the second kind instead of the estimate in-
troduced in Eq. (5) in the main paper. For Ntrain = 32 it is
expected that the amount of different images that were sam-
pled after 15 samples lies between 10 and 14. If we observe
more duplicates than this we would reject the hypothesis
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Figure 8. IRS→, indicated by dots, and confidence intervals
IRS→,L and IRS→,U for three different simulated ImageNet mod-
els. By increasing the number of observations (ω), we also in-
crease the confidence of the IRS→ predictions. The black dashed
line indicates the ground truth and the vertical line the value for
50k samples.

that this model has the potential to generate Ntrain = 32
different images. For larger training dataset sizes the num-
ber of expected different generated images increases. E.g.,
for Ntrain = 39 we would even reject a model that only
produces 10 different images.

8. Further Visual Results

To illustrate the image retrieval results, we present visu-
alizations for ImageNet-512 in Fig. 10. For a randomly
selected subset of images, we compute the image corre-
spondences based on the predictions P from all benchmark
models discussed in Sec. 4. The results highlight how cer-
tain models, such as DINOv2 and Inception, retrieve im-
ages based on semantic similarity, while others, like the
Random model, focus on general image composition (e.g.,
a dog resembling a triangular shape against a white back-
ground, similar to a child on the beach). The final example
demonstrates that most models retrieve near duplicates, but
not all do so consistently. DINOv2, for instance, incorpo-
rates a deduplication step in its pipeline to minimize redun-
dancy [34], which may influence these results. The third
row in Fig. 10 presents an ambiguous case. A model that
emphasizes image composition, such as DINOv2, may re-
trieve an image of a woman standing in front of a board. In
contrast, a model that prioritizes visual similarity in human
appearance, such as CLIP, retrieves another image featur-
ing a similarly appearing woman. This trade-off has to be
considered when using feature extractors to assess the per-
formance of generative models with metrics such as FID,
Precision, Recall, or IRS.

9. Image Retrieval Agreement and Consensus
In Sec. 4.1 we argued that due to the adjustment step in-
troduced in Sec. 3.4 we can in theory choose any kind of
feature extractor F . In order to maximize the interpretabil-
ity of IRS we use the extractor that has the best agreement
with the consensus of all models. Therefore, we compute
the correspondence prediction for each of the feature extrac-
tors for ImageNet. We ensemble the decision of each model
and call every prediction where five or more models decide
for the same image correspondance as consensus. Then we
check how often each model agrees with the ensemble de-
cision. Agreement computes how often two models agree
with each other. Our goal is to see if we can measure how
good a model’s prediction aligns with the prediction of the
ensemble. The consensus reached by the ensemble is then
considered the ground truth. The results are shown in Tab. 1.
There is a large discrepancy between the agreement of all of
these models. Our expectation was that consesus is reached
mostly by the same models. While this is true, the models
that are most frequently part of the consensus, are not the
models that showed the most diversity which we discuss in
Sec. 14. DINOv2, for example, performed best in terms of
diversity on ImageNet but got beaten on agreement by Con-
vNeXt, one of the worst models in terms of diversity. SwAV
on the other hand shows extraordinary agreement with the
consensus and is almost always agrees with the consensus,
but the output features lack diversity. Next, we examine
ImageNet and the number of feature extractors that agree
on image correspondence, as shown in Fig. 11. We find
that, for the majority of images, almost 40%, all models
disagree with each other. This outcome aligns with expecta-
tions, as many images have multiple valid correspondences,
as discussed in Sec. 8. The more models required to reach
a consensus, the fewer samples meet this criterion. Conse-
quently, we consider the consensus decision correct when
at least five models agree, as this represents a majority de-
cision. Fig. 11 further illustrates the level of agreement be-
tween models. Notably, data2vec and Random exhibit low
agreement with all other models, whereas ConvNeXt shows
the highest agreement with other models, particularly with
CLIP and DINOv2. This shows that there is no real corre-
lation between diversity and agreement and both have to be
measured seperately.

10. Further Distance Metric Sensitivty Analy-
sis

We consider two different measurements P to compute the
distance between fx = F(xt) of the query image and all
reference images fx→ = F(x↑

t). The first one is the cosine
distance derived from cosine similarity. It is used by many
feature extractors directly such as [34]. Additionally, we
consider the Euclidean distance between features which is
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Figure 9. Illustration of the selection process of the threshold for a fixed number of samples with different trainingset sizes.

used by several metrics such as Precision, Recall [26]:

PCosine(xt,x
↑
t) = dCosine(fxt , fx→)

= 1 ↑ fxt · fx→

↓fxt↓↓fx→↓
(10)

and:

PEuclidean(xt,x
↑
t) = dEuclidean(fx, fx→)

=

√√√√
n∑

i=1

(f i
x ↑ f i

x→)2
(11)

We compute the distances on ImageNet over five folds with
a fixed number ratio between the size of training and sam-
pling set. The results are shown in Sec. 10 . Gener-
ally, we observe the same measurement gap. Irrespective
of the measurement, all the feature extractors need much
longer to converge to 100% expected diversity according to
Eq. (1). Visual inspection of the retrieved images from ran-
domly drawn samples yields that the results for each model
are very similar. However, the performance of some of
the models depends heavily on the used metric. data2vec,
for example, did not show good performance for the Eu-
cledian distance but the best performance for cosine dis-
tance. DINOv2 is the complete opposite. It outperformed
all other models according to the Euclidean distance but is
only mediocre according to cosine distance. We conclude
that the choice of distance metric has a large influence on
the relative performance between all feature extractors. It
does not impact the underlying problem that all of them are
far from reaching the expected performance. We decide to
focus our experiments on the Eucledian distance due to its
connection to established generative metrics [26].

ω = 2 ω = 6

Idealized 86.47 99.75
dcosine deuclidean dcosine deuclidean

BYOL 67.46 ± 0.04 67.93 ± 0.04 87.94 ± 0.04 88.29 ± 0.09
CLIP 65.00 ± 0.03 66.85 ± 0.03 85.07 ± 0.05 87.45 ± 0.08
ConvNeXt 64.56 ± 0.03 52.34 ± 0.07 85.13 ± 0.09 68.30 ± 0.09
data2vec 73.08 ± 0.09 40.75 ± 0.04 93.26 ± 0.06 59.15 ± 0.07
DINOv2 66.57 ± 0.05 66.64 ± 0.05 87.31 ± 0.06 87.32 ± 0.04
Inception 65.75 ± 0.08 60.00 ± 0.05 86.48 ± 0.04 79.71 ± 0.10
MAE 68.06 ± 0.04 68.17 ± 0.06 88.13 ± 0.03 88.22 ± 0.03
Random 69.65 ± 0.07 71.29 ± 0.05 89.60 ± 0.06 90.89 ± 0.06
SwAV 70.31 ± 0.06 64.19 ± 0.08 90.55 ± 0.03 84.38 ± 0.16

Table 4. Comparison of cosine and Euclidean distances averaged
across five folds. For each model and ω, the best P value is high-
lighted in bold.

11. Computational Requirement

To benchmark the proposed lacking diversity rejection
method we use the method for the official ImageNet-512
train set with Ntrain = 1281166. We set the desired IRS to
80% and the probability of error to 5% with 50000 reference
and synthetic samples each. Eq. (9) states that we reject the
checkpoint for not being diverse enough if, after sampling,
Nlearned < 48744 images are learned (does not account for
measurement gap). Computing this threshold takes roughly
three seconds and does not depend on the images sam-
pled. Computing Xlearned takes longer and depends on the
forward pass of F . For Inception-v3 it roughly takes five
minutes on a single Nvidia-A40 GPU. However, these fea-
tures are also necessary to compute FID and other metrics
so they are usually already available. If the pre-computed
features are available, computing IRS→,a takes 40 seconds
for ImageNet. Note that we do not need the entire synthetic
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Figure 10. Qualitative results of image retrieval on ImageNet (Top) and FFHQ (bottom).
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Figure 11. Comparison of Consensus and Agreement of different feature extractors for the ImageNet Dataset

Figure 12. Random intra-class examples of real reference images
and images generated by DiADM with different generation seeds
for “No Finding” class.

dataset to compute an upper bound for Nlearned according
to Eq. (2). If within the first 2000 samples we already ob-
serve over 1257 duplicates we can immmediately reject the
model. For the smaller datasets like Dynamic, computing
IRS→,a from precomputed features takes less than a sec-
ond.

12. Visual Results DiADM

To illustrate why extracting features is effective for diverse
data generation we show real and generated samples from
DiADM (Fig. 12). From the feature vector of Inception, Di-
ADM learned to pick up pseudo-conditional features skew-
ness, brightness, presence of tubes and can be tasked to gen-
erate them with equivalent diversity. Small differences be-
tween the generated samples confirm that they are not sim-
ply memorized.

13. Results with Domain Specific Feature Ex-
tractors

In the next step, we analyze the impact of feature extrac-
tors on prediction performance. Specifically, we examine
how the performance associated with the observed mea-
surement gap changes when feature extractors are tailored
to the dataset. For this analysis, we compare the privacy
models proposed in [14, 40]. These models were trained
for re-identification on the EchoNet dataset [35], utilizing a
Siamese architecture where the input consists of two frames
and the output predicts whether the frames originate from
the same video [14]. This model can also be directly ap-
plied for image retrieval. The results, presented in Tab. 5,
show that training models specifically for this dataset re-
duces the measurement gap. The models outperform all
pre-trained feature extractors by more than eight percent-
age points. Furthermore, the findings suggest that the mea-
surement gap can be minimized for specific datasets when
necessary.

14. IRSreal Results
In Sec. 4.1 we explain the measurement gap stemming from
feature extractors collapsing to smaller features spaces that
lack expressiveness in terms of diversity. Quantitative prove
for this is shown in Fig. 13 and Tab. 6. The best perform-
ing model across all datasets is the randomly initialized
Inception-v3 suggested by [33]. If we compare this to the
visual examples shown in Fig. 10, we see that this similar-
ity seems to be more based on the general composure of
the images than the semantics. BYOL pre-trained on Im-
ageNet also performs well on all datasets. DINOv2 is the
best performing model on ImageNet, which confirms the
observations from [49].



ω 2 16

Idealized 86.47 99.99

BYOL 69.91 ± 0.56 97.97 ± 0.48
CLIP 64.71 ± 0.50 95.61 ± 0.74
ConvNeXt 56.70 ± 1.05 89.58 ± 1.12
data2vec 56.54 ± 0.48 97.08 ± 0.62
DINOv2 63.13 ± 0.33 95.15 ± 0.63
Inception 60.62 ± 0.69 93.00 ± 1.04
MAE 64.57 ± 0.68 96.31 ± 0.81
Random 73.35 ± 0.71 98.75 ± 0.33
SwAV 59.20 ± 0.57 92.63 ± 0.88
Re-identification [40] 80.96 ± 0.34 99.61 ± 0.27
Re-identification Latent [14] 81.91 ± 0.75 99.95 ± 0.08

Table 5. IRSω for EchoNet-Dynamic using domain specific re-
identification models from [40] and [14].
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Figure 13. Measured diversity according to IRS of common fea-
ture extractors between real training and real test images. The
dashed line indicates the idealized model IRS 7

3
= 96.98%.

15. Metrics Analysis and Comparison
15.1. IRS over FID in Measuring Diversity Insuf-

ficiency and Bias Amplification
Here, we analyze the properties of IRS and demonstrate
its superiority over FID [20] in detecting diversity insuffi-
ciency and bias amplification in generative models.

Definition of FID. Follow [20], here let Xr and Xg denote
the feature distributions of real and generated data, respec-
tively. The FID is defined as:

FID = ↓µr↑µg↓2+Tr
(
Cr + Cg ↑ 2 (CrCg)

1/2
)

(12)

where µr, Cr and µg , Cg are the mean vectors and covari-
ance matrices of the real and generated feature distributions,
respectively. FID measures the distance between these two
distributions under the assumption that they are Gaussian.

Definition of IRS. Let xt be an image from a dataset
consisting of Ntrain real images residing in image space
X ↔ Rc↓h↓w. Unconditional generative models aim to
learn the distribution pdata(X) and sample Nsample syn-
thetic images from it. Define Nlearned as the number of
unique training samples retrieved by the generated samples.
The IRS is:

IRSω =
Nlearned

Ntrain
(13)

where ω = Nsample

Ntrain
is the sampling rate. More details can

be found in Eq. 2.

Theorem 1. IRS exhibits higher statistical sensitivity than
FID in detecting diversity insufficiency and bias amplifica-
tion in generative models.

Proof. Diversity Insufficiency. Assume the generative
model can produce K < Ntrain unique training samples.
The expectation of IRS is:

E[IRSω] =
K

Ntrain

(
1 ↑

(
1 ↑ 1

K

)Nsample
)

(14)

Since K < Ntrain and
(
1 ↑ 1

K

)Nsample >
(
1 ↑ 1

Ntrain

)Nsample

↗ e↔ω, it follows that:

E[IRSω] < 1 ↑ e↔ω (15)

Thus, IRS effectively captures the reduction in diversity
when K < Ntrain.

Conversely, FID measures the distance between feature
distributions based on mean and covariance. Even if K <
Ntrain, if the K samples are diverse in feature space, µg

and Cg may remain close to µr and Cr, resulting in a low
FID that fails to reflect the reduced diversity.

Bias Amplification. Suppose the generative model mem-
orizes (i.e., guided) K ↘ Ntrain training samples, effec-
tively reproducing these samples. The expectation of IRS
is:

E[IRSω] =
K

Ntrain

(
1 ↑

(
1 ↑ 1

K

)Nsample
)

↘ 1 (16)

Given K ↘ Ntrain, IRS approaches K
Ntrain

, significantly
lower than the ideal value of 1 ↑ e↔ω, thereby effectively
indicating bias amplification.

In contrast, FID ↗ ↓µr ↑ µg↓2 +

Tr
(
Cr + Cg ↑ 2 (CrCg)

1/2
)

. If the memorized K

samples have feature statistics close to the biased data
distribution, FID remains low, failing to detect bias
amplification.



Model ImageNet FFHQ ChestX-ray14 CelebV-HQ Dynamic
BYOL 82.30 ± 0.66% 85.13 ± 0.75% 82.60 ± 0.53% 83.96 ± 1.10% 82.35 ± 0.59%
CLIP 83.92 ± 0.72% 83.43 ± 0.74% 76.72 ± 0.85% 82.54 ± 0.85% 76.90 ± 0.92%
ConvNeXt 57.29 ± 0.93% 73.04 ± 1.05% 68.88 ± 0.70% 66.95 ± 1.35% 68.82 ± 0.76%
data2vec 81.61 ± 1.23% 78.67 ± 0.41% 53.07 ± 0.56% 64.05 ± 0.76% 78.98 ± 0.79%
DINOv2 86.50 ± 0.67% 81.75 ± 0.70% 73.85 ± 1.08% 80.53 ± 0.67% 75.35 ± 0.67%
Inception 75.46 ± 0.67% 71.65 ± 0.92% 73.54 ± 0.57% 71.53 ± 0.87% 72.99 ± 1.14%
MAE 77.53 ± 0.80% 79.37 ± 0.96% 82.62 ± 0.84% 79.53 ± 0.47% 76.58 ± 0.78%
SwAV 75.10 ± 0.68% 75.77 ± 1.00% 76.00 ± 0.81% 74.58 ± 0.84% 70.82 ± 1.00%
Random 85.59 ± 0.63% 86.16 ± 0.51% 88.32 ± 0.65% 86.67 ± 0.50% 85.38 ± 0.54%

Table 6. IRS computation only using real data. Results give percentage of real samples retrieved using common feature extractors. The
idealized scenario reaches IRS 7

3
= 96.98%. To make comparison across datasets easier results are presented for a fixed size of 3000

training images and 7000 test images on all dataset. Best results are bold and second best results underlined.
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Figure 14. Measuring diversity of datasets by removing classes
and computing IRS.

15.2. Comparison to Other Metrics
Alternative metrics, such as Precision, Recall, Density, and
Coverage, are susceptible to issues arising from varying
hyperparameter settings. We demonstrate this by setting
the number of considered neighbors to 1 for these metrics
and replicating the experiment shown in Fig. 5. The re-
sults, presented in Fig. 14, reveal that all metrics converge
to very low diversity values, even when only real data is
used. This indicates that incorrect hyperparameter configu-
rations can prevent these metrics from converging to a diver-
sity value of 1.0 for real data, significantly compromising
the interpretability of the results. Note the key difference
between recall and IRS in this example: For IRS, a single
synthetic sample can correspond to only one real sample,
whereas multiple synthetic samples can lie within the man-
ifold spanned by the 1-NN manifold for recall.
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