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Supplementary Material

In this paper, we propose a novel Channel Consistency
Prior and Self-Reconstruction Strategy based Unsupervised
Image Deraining framework, CSUD, to address the lack of
paired data and the poor generalization in real-world sce-
narios. Extensive experiments on multiple synthetic and
real-world datasets verify that our method achieves excellent
deraining performance. What’s more, as shown in Fig. 1,
our CSUD achieves the most promising performance on the
real-world captured images compared to both supervised and
unsupervised deraining methods, which demonstrates strong
generalization capability of our CSUD. This supplementary
material mainly includes the following contents:
• More detailed explanations of the proposed channel con-

sistency prior and self-reconstruction strategy;
• The specific structure of certain used networks;
• More implementation details of the experiments men-

tioned in the main document;
• Additional experiment results and analysis;
• Discussion and limitations of our method.

1. More Explanations of Channel Consistency
Prior

In the main document, we have provided a detailed introduc-
tion to the channel consistency prior (CCP) of rain streaks:
in RGB rainy images, most rain streaks tend to be consistent
across the R, G, and B channels, and the cycle subtractions
of R, G, and B channels in rainy images will almost contain
no rain streaks and should be close to the cycle subtractions
in clean images. To present the conclusions derived from
CCP more clearly and intuitively, we provide a more de-
tailed visualization of the CCP in rainy images along with
the corresponding clean images in Fig. 2, including synthetic
rain, real-world rain, and real-world nighttime rain. We can
clearly observe that while there are significant differences
in the background parts among the three channels of rainy
images, the rain streaks tend to be consistent, and the cycle
subtractions of R, G, and B channels in rainy images tend to
be consistent with that of their corresponding clean images.

Currently, the rain in an image is typically modeled using
the linear superposition model: Y = X +R, where Y is the
rainy image, R is the rain layer, and X is the image back-
ground. Most image deraining researches [2–4, 7, 12, 18, 24]
focuses on the removal of the rain layer R in images. One of
the reasons why many unsupervised image deraining models
perform poorly is that, while they remove rain layer, they
struggle to maintain the integrity of other background infor-
mation in the image. In this work, we also mainly focus on

Figure 1. Deraining results on the real rainy images captured by
ourselves in real-world scenarios. Compared with the supervised
method Restormer [22] and the unsupervised method DerainCy-
cleGAN [18], our CSUD exhibits extremely strong generalization
capability and achieves the best visual results.

removing rain layer R from rainy images. During training,
the derainer learns the mapping between pseudo-rainy im-
ages and real clean images X . If the pseudo-rainy images
maintain the main background information of X , differing
from clean images only by the presence of the rain streaks,
the derainer will learn the optimal mapping relationship.
Thus, we introduce the Channel Consistency Loss (CCLoss)
to constrain the generator G to produce pseudo-rainy images
that retain most of the image content consistent with the orig-
inal clean images X aside from the rain streaks. Through
the constrain of CCLoss, the derainer can better learn the
desired mapping.

In addition, we separately analyze the special cases which
include nighttime artificial light sources. As shown in Fig. 3,
we provide a visualization of CCP under the nighttime
artificial light scenario. While the rain streaks in rainy
image appear yellowish due to interference from artificial
light, the rain streaks in the residual image do not exhibit
such yellowish tones, and most rain streaks still conform
to CCP among R,G,B channels. According to the linear
superposition model, rainy images can be understood as the
superposition of the rain layer and the clean background.



Figure 2. Visualization of channel consistency prior in rainy images. From top to bottom, the 3 sets of images are synthetic, real-world, and
real-world nighttime images, respectively. The first column presents the clean and rainy RGB images; the second, third and fourth columns
present their R, G, B channels, respectively; the fifth, sixth, and seventh columns present the cycle subtractions of R, G, and B channels of
clean and rainy images, respectively.



Figure 3. Visualization of channel consistency prior under the nighttime artificial light scenario.

Therefore, the yellowish hue in rain streaks is the color of
the background introduced by artificial light. Futhermore, in
Fig.7, Tab.1, and Tab.2 of the main text, we test our model
on real-world datasets RealRain1K-L and RealRain1K-H
which include numerous nighttime artificial light sources,
and our CSUD achieves remarkable results.

Certainly, there may be some rain streaks that do not
adhere to the CCP, but this does not significantly affect the
network’s performance. This is because, besides CCP, the SR
strategy and overall unsupervised framework with the three
additional constraints based on CycleGAN [27] can also en-
sure the accurate and effective generation of pseudo-paired
rainy images, as well as the deraining and generalization per-
formance of CSUD. The CCLoss serves as a further auxiliary
enhancement to the overall framework, aiming to transfer
rain streaks while preserving more background details as
much as possible, which makes our framework more robust.
It is the combined effort of our unsupervised framework,
CCLoss, and the SR strategy that achieves the outstanding
unsupervised deraining performance of CSUD.

2. More Explanation of Self-Reconstruction
Strategy

As described in main document, xder restored by derainer
Der is not adopted in SRLoss for generator LSR−G. How-
ever, xder can also be used in LSR−G to constrain the train-
ing process of generator G, but we do not add it in the final
implementation in order to make the SR loss for generator
LSR−G and SR loss for derainer LSR−Der on the same scale
and reduce the calculation of the training process, which has
little effect on the performance of the network. Addition-
ally, as shown in Fig. 4, we present more visualizations of
the effects of SR strategy on the performance of generator
G. With SR strategy, the generator effectively alleviates
the redundant information transfer problem, ensuring that
higher-quality pseudo rainy images are generated.

3. Detailed Network Structures.
As described in the main document, the proposed CSUD
mainly consists of a derainer, a generator, and a discriminator.
To balance the performance and computational complexity,
we adopt the simple CNN-based image restoration baseline
NAFNet [1] (the version of width32) as the default derainer.

Figure 4. The effects of SR strategy on the performance of genera-
tor. The first and second columns present the input rainy and clean
images of the generator, respectively; the third column presents
pseudo rainy images generated by the generator without SR strat-
egy; the fourth column presents pseudo rainy images generated by
the generator with SR strategy.

Architecture of the Generator. The architecture of the
generator used in our network is shown in Fig. 5, it con-
sists of a clean feature extraction module (CFEM), a rain
information extraction module (RIEM) and 6 residual blocks.
The RIEM is based on a U-Net architecture, comprising a
downsampling layer followed by an upsampling layer, while
the CFEM simply utilize a convolutional layer. Specifically,
the two convolutional layers in RIEM (denoted as ”conv”)
have input channels, output channels, kernel size, stride, and
padding settings of [3, 64, 7, 1, 3] and [64, 64, 7, 1, 3],
respectively. The downsampling layer in RIEM is a convolu-
tional layer with input channels, output channels, kernel size,
stride, and padding set to [64, 128, 4, 2, 1]. The upsampling
layer in RIEM uses a ’bilinear’ interpolation, followed by
a convolutional layer with input channels, output channels,
kernel size, stride, and padding set to [128, 64, 3, 1, 1].
The convolutional layer in CFEM has input channels, output
channels, kernel size, stride, and padding set to [3, 64, 7, 1,
3]. Each residual block consists of two 3 × 3 convolution
layers with ReLU activation function. The generator learns
the rain characteristics of rainy images to guide the synthesis



Figure 5. Detailed network structures of the generator.

Figure 6. Detailed network structures of the discriminator.

of clean images towards rainy ones, providing ample pseudo
rainy images paired with the clean ones for the derainer.

Architecture of the Discriminator. In our network, we
use a Patch-GAN [8] discriminator, as shown in Fig. 6. The
discriminator is starting with a 4 × 4 convolution layer with
ReLU activation function, followed by three intermediate
layers, each of which consists of instance normalization
between the convolution layer and the activation function,
and ending with a 4 × 4 convolution layer with a stride of 1.

4. More Explanation of Experiment Setting
As described in the main document, following [10, 18], we
conduct experiments from two aspects: (1) unsupervised
deraining performance and (2) generalization performance.
In experiment (2), we only train our model on the synthetic
dataset Rain100L [19], and then test on various real-world
and nighttime datasets. This experimental setup is designed
to better demonstrate the strong cross-domain generaliza-
tion ability of our CSUD framework, specifically its de-
raining performance when faced with various rain streak
distributions, rather than suggesting that our CSUD should
be trained exclusively on synthetic datasets for optimal per-
formance. Our CSUD can also be trained on unpaired real-
world datasets and achieve better performance. In the main
document, we have conducted experiments on the real-world
RealRain-1k-L and RealRain-1k-H datasets according to
the experiment (1) settings. Trained on unpaired real-world
datasets, CSUD achieves better results on the two real-world
datasets, even surpassing some classic supervised methods.

5. Experiment Details
Datasets. Detailed descriptions of the datasets employed are
provided in Tab. 1. In experiment (1), we use the correspond-
ing different training sets to train independent models for
Rain100L [19], Rain100H [19], Rain800 [9], RealRain1K-
L[10], and RealRain1K-H [10] test sets respectively. No-
tably, we utilize the model trained on Rain100L to test on

Table 1. Detailed description of the datasets utilized.

Datasets Rain100L [19] Rain100H [19] Rain12 [11] Rain800 [9] RealRain1K-L [10]

Train 200 200 0 700 784
Test 100 100 12 100 224

Rain Type Synthetic Synthetic Synthetic Synthetic Real-world

Datasets RealRain1K-H [10] SPA-data [16] RainDS [15] Internet-Data [17] Night-Rain [23]

Train 784 638,492 150 0 5000
Test 224 1000 98 147 500

Rain Type Real-world Real-world Real-world Real-world Night-Time

Rain12 [11] dataset. As for experiment (2), we only train
our model on Rain100L [19], and then test on the 6 real-
world and night-time test sets, including RealRain1K-L[10],
RealRain1K-H [10], SPA-data [16], RainDS [15], Internet-
Data [17], and Night-Rain [23]. It is worth noting that
RainDS includes multiple subsets, including synthetic and
real subsets, with the two subsets further divided into rain
streaks, rain drops, and a mixture of rain streaks and drops.
Since our method focuses on removing rain streaks and ex-
periment (2) is to evaluate generalization performance on
real-world and night-time test sets, so we only select the rain
streaks subset from the real RainDS subset for testing. All
other comparison models are also tested on this subset.

Implementation Details. Our framework is implemented
by PyTorch [13] with a GeForce RTX 3090 GPU. For train-
ing, we adopt the Adam optimizer [5] (β1 = 0.9, β2 = 0.999)
to train our network. We train the framework for 200 epochs
with the initial learning rate of 1e−4, followed by another
100 epochs with a learning rate of 1e−5. All training images
are randomly cropped to 256 × 256 patches in an unpaired
learning manner, and the batch size is set to 2. The hy-
perparameters of SSIM loss (λ1), perceptual loss (λ2), and
SRLoss for derainer (λ3) are set to 1, 0.2 and 0.5 respec-
tively, while CCLoss (α1) and SRLoss for generator (α2)
are set to 10 and 5 respectively. Notably, we add perceptual
loss to our framework is not to improve perceptual quality of
our results, but to enhance the stability of the unsupervised
training process. Because we find that only using L1 loss
as the constraint of the derainer will collapse in the middle
of the training process, which is caused by the difficulty
and instability of the GAN manner. For fair comparison, all
PSNR and SSIM scores reported in the main document are
calculated on the RGB channels. The results of other meth-
ods are directly cited from the original papers or generated
using the official models. For the results on datasets that the
authors did not report or test, we retrain their models using
the official code provided by the authors.

6. More Experiment Results

We present more experiment results on unsupervised derain-
ing performance and generalization performance to further
elucidate the effectiveness of the proposed CSUD.



Figure 7. Qualitative deraining results on Rain100L [19] dataset.

Figure 8. Qualitative deraining results on Rain12 [11] dataset.

6.1. Unsupervised Deraining Results
We provide additional visual comparisons on benchmark
datasets in Fig. 7, Fig. 8, and Fig. 9. We compare our CSUD
with several recent state-of-the-art unsupervised and super-
vised image deraining methods, including [2, 14, 18, 20, 21].
As shown in the figures, it can be seen that our CSUD
achieves better results in removing rain streaks compared to
other unsupervised methods and our CSUD preserves more
texture details of image background. It is worth noting that
there is a certain background color offset between the input
and GT images of Rain800 dataset [9], however, our CSUD
aims to preserve more color and texture details of image
background while removing rain streaks, so our quantitative
results in the main document which are are not the best.

6.2. Generalization Deraining Results
To validate the generalization capability of CSUD, we pro-
vide more additional visual comparisons with other un-

supervised and supervised deraining methods, including
[2, 14, 18, 20, 22] in Fig. 12, Fig. 11, and Fig. 10. All
methods are trained on synthetic datasets and tested on the
unseen real-world datasets. Compared to other methods, our
CSUD achieves better visual results in real-world scenarios,
which demonstrates the excellent generalization capability
of CSUD.

6.3. More Ablation Studies

Effect of CSUD framework on perceptual quality. To
more comprehensively evaluate the performance of our
CSUD in real world, we select 3 deraining baselines MPR-
Net [21], NeRD-Rain-S [4], and NAFNet [1], and we use
additional perceptual quality metrics to test their supervised
version and unsupervised version with our CSUD on 3 real-
world datasets. The perceptual quality metrics includes full-
reference metrics: LPIPS [26], DISTS [6] and no-reference
metric: NIQE [25]. As shown in Tab. 2, our CSUD achieves



Figure 9. Qualitative deraining results on Rain800 [9] dataset.

Table 2. Quantitative perceptual quality comparisons of different deraining baselines with or without our methods.

Datasets RealRain1K-L [10] RealRain1K-H [10] SPA-data [16]

Metrics LPIPS ↓ / DISTS ↓/ NIQE ↓ LPIPS ↓ / DISTS ↓/ NIQE ↓ LPIPS ↓ / DISTS ↓/ NIQE ↓

MPRNet (Supervised) 0.355 / 0.279 / 8.872 0.424 / 0.314 / 8.231 0.159 / 0.125 / 7.946
MPRNet + CSUD (Unsupervised) 0.228 / 0.213 / 9.874 0.271 / 0.241 / 9.452 0.151 / 0.124 / 7.532

NeRD-Rain-S (Supervised) 0.341 / 0.298 / 7.132 0.445 / 0.339 / 6.679 0.167 / 0.131 / 7.151
NeRD-Rain-S + CSUD (Unsupervised) 0.336 / 0.298 / 7.104 0.441 / 0.338 / 6.489 0.160 / 0.130 / 7.079

NAFNet (Supervised) 0.308 / 0.285 / 7.150 0.416 / 0.328 / 6.722 0.152 / 0.124 / 7.108
NAFNet + CSUD (Unsupervised) 0.258 / 0.257 / 8.103 0.345 / 0.295 / 7.622 0.141 / 0.120 / 7.369

Table 3. Ablation experiments on the numbers of GANs. All mod-
els in the table are trained on Rain100L. SPA-Data and RealRain1K-
L are used to evaluate the model’s generalization capability. Bold
fonts indicate the highest metrics.

Num of GANs Rain100L RealRain1K-L SPA-data
PSNR ↑ / SSIM ↑ PSNR ↑ / SSIM ↑ PSNR ↑ / SSIM ↑

1 31.87 / 0.919 28.11 / 0.906 33.13 / 0.932
2 32.92 / 0.948 29.08 / 0.923 33.67 / 0.936
4 33.28 / 0.954 29.21 / 0.928 33.57 / 0.939

the best LPIPS and DISTS with all the 3 baselines, and
NeRD-Rain-S with CSUD maintains best results for all the 3
perceptual metrics on all the 3 datasets. This shows that the
derained image obtained by our method can obtain higher
perceptual quality, and further demonstrates the effectiveness
and the generalization ability of our methods.

Effect of the additional 3 GAN constraints. The intro-
duction of the additional 3 adversarial constraints aims to
enhance the training stability and improve the network’s per-
formance. To validate the necessity, we respectively train the
model with 1, 2, and 4 adversarial constraints, with results
shown in Tab. 3. It is obvious that when 4 GAN constraints
are used, the deraining performance and generalization abil-
ity of the network are the best, demonstrating the effective-
ness of the additional 3 GAN constraints. Note that, during
inference, only the derainer is used and our framework does
not introduce any additional inference overhead.

Separation training of our framework. In order to
further explore whether our unsupervised framework can
train the generator and the derainer separately, we first train
the generator separately and then train the derainer with

Table 4. Ablation experiments on separation training of CSUD
framework. All models in the table are trained on Rain100L. Bold
fonts indicate the highest metrics.

Training Strategy Rain100L RealRain1K-L SPA-data
PSNR ↑ / SSIM ↑ PSNR ↑ / SSIM ↑ PSNR ↑ / SSIM ↑

Separate Training 31.06 / 0.947 29.06 / 0.928 32.39 / 0.936
Joint Training 33.28 / 0.954 29.21 / 0.928 33.57 / 0.939

the pseudo-paired rain-clean image generated by the trained
generator. As shown in Tab. 4, although it can still achieve
good performance under separate training, its deraining per-
formance and generalization ability have significantly de-
creased compared to joint training. Many components in
our framework rely on the collaborative interaction to make
derainer and generator mutually enhance each other. If the
generator and derainer are trained separately, the SRloss for
derainer and additional GAN constraints cannot be added
to training process, and the generator cannot continuously
generate pseudo-paired data, which will cause reduced con-
straints and performance degradation.

7. Discussion and Limitations

Like other image deraining methods, our method also face
the same problem that it may mistakenly remove some back-
ground textures similar to the rain streaks in real rainy im-
ages, this shortcoming needs to be further improved. Addi-
tionally, our method can be widely applied in many applica-
tions such as autonomous vehicles and video surveillance.
Therefore, one should be cautious of questionable results and
avoid infringement of privacy or negative impact on society.



Figure 10. Qualitative generalization results on Internet-Data [17] dataset.

Figure 11. Qualitative generalization results on SPA-data [16] dataset.
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