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Supplementary Material

We provide the following content in the supplementary
materials:
• We provide a comprehensive dataset statistics of DTC

dataset in Sec. A, including the full category of DTC ob-
jects, the list of objects used in DLSR and egocentric
recording respectively. We also provided visualizations
for examples of DTC objects, DSLR and egocentric data.

• We include complementary details of benchmark in Sec. B.
First, as indicated by the main paper, we include a sparse
view setting of benchmark. We further provide the base-
line comparisons and analysis for DSLR benchmark and
egocentric benchmark. We use the same baselines and
dataset split as described in the main paper.

• We provide details of the simulation and experiments for
our robotics experiments in Sec. C.

A. DTC Dataset Statistics & Details
In this section, we present the category list of DTC 3D ob-
jects (Sec. A.1) and showcase additional examples of DTC
digital-twin-quality 3D objects (Fig. 9). We also provide the
list of selected objects used for creating the DSLR evalua-
tion dataset (Sec. A.2) and the egocentric evaluation dataset
(Sec. A.3). Furthermore, we include additional examples
of real-world captures and recordings to better illustrate
the DSLR (Sec. A.4) and Egocentric (Sec. A.5) evaluation
datasets.

A.1. Categories of DTC Scanned Objects
In DTC dataset, we selected and scanned 2,000 physical-
world objects across 40 carefully curated categories from the
taxonomy of LVIS [27]. These categories were chosen to en-
sure a diverse representation of common daily objects while
remaining compatible with the scanner’s capabilities. Table 5
provides an overview of these categories, including the num-
ber of models, average vertex count, minimum/maximum
vertex numbers for each category and corresponding cate-
gory label in LVIS taxonomy.

For each scanned model, we generated high-quality 4K-
resolution PBR material maps—including albedo, roughness,
metallic, and normal maps—to achieve a photorealistic ap-
pearance. Fig. 9 showcases additional examples of DTC
scanned digital-twin-quality 3D models, each accompanied
by a full set of PBR material maps (Fig. 10, 11, 12, 13, 14).

A.2. List of Models for DSLR Evaluation Data
The full list of object models selected for DSLR evaluation
data is as follows, and each model is captured under 2 dif-

Category # Models avg # vert / std min / max LVIS Category
airplane 15 129,153 / 15,535 80,719 / 144,587 airplane
axe 3 133,588 / 1,922 132,096 / 136,301 ax
basketball 55 132,260 / 3,013 128,652 / 140,985 basketball
birdhouse 102 147,577 / 11,057 98,405 / 182,594 birdhouse
bowl 106 127,456 / 1,019 125,883 / 130,964 bowl
building blocks 129 96,592 / 46,377 28,181 / 301,475 toy
calculator 38 131,244 / 3,638 126,379 / 139,970 calculator
candle 31 108,221 / 58,406 15,897 / 309,601 candle
candle holder 1 132,285 / 0 132,285 / 132,285 candle holder
cast iron 31 165,954 / 127,424 128,074 / 711,536 pan
cup 58 137,154 / 43,605 126,346 / 417,343 cup
cutting board 16 133,796 / 11,244 127,543 / 173,141 chopping board
dino 103 82,403 / 29,477 13,796 / 151,148 animal
dish 51 129,732 / 4,130 127,014 / 147,451 dish
dumbbell 39 156,915 / 165,650 126,593 / 1,177,907 dumbbell
fake food can 79 117,829 / 22,772 78,646 / 270,271 can
fakefruit 96 124,037 / 9,724 100,833 / 151,870 fruit
figurine 77 57,152 / 47,753 15,482 / 140,812 figurine
football 48 132,323 / 2,953 126,719 / 138,459 football
gargoyle 50 137,921 / 5,019 130,206 / 151,325 gargoyle
gravestone 24 85,245 / 55,760 10,750 / 150,966 gravestone
hammer 33 133,413 / 36,272 46,808 / 320,845 hammer
hardcover book 17 174,884 / 102,168 130,267 / 500,735 hardback book
key 2 60,456 / 41,100 19,357 / 101,556 key
keyboard 25 146,684 / 12,414 129,360 / 174,488 computer keyboard
knife 10 126,359 / 8,118 102,569 / 133,250 knife
mallard (fake duck) 48 99,728 / 45,926 9,000 / 131,058 mallard
marker 54 93,394 / 39,460 34,796 / 306,272 marker
miscellaneous 44 149,799 / 168,694 27,772 / 1,208,696 NA
mouse 52 144,184 / 46,099 121,879 / 304,533 mouse
pistol 2 133,587 / 91 133,496 / 133,678 pistol
pottery 46 143,284 / 162,783 12,354 / 1,206,223 pottery
remote 2 42,993 / 17,068 25,925 / 60,061 remote control
shampoo 45 143,639 / 75,261 126,285 / 604,491 shampoo
shaver 20 142,231 / 57,736 38,246 / 306,105 shaver
shoes 121 139,363 / 4,171 130,604 / 148,465 shoe
speaker 40 201,013 / 152,410 127,154 / 852,714 speaker
spoon 34 107,649 / 56,459 29,712 / 302,920 spoon
teapot 99 145,149 / 100,792 85,289 / 926,273 teapot
vase 101 142,927 / 142,946 61,488 / 1,568,710 vase
volleyball 52 133,921 / 4,056 129,653 / 144,770 volleyball

Table 5. Categories of DTC Scanned Objects. We include the
number of models per object (#Models), the average number of
vertices per object categories (avg # vert) and its standard deviation
(std), the minimum and maximum number of vertices within the
object category (min/max), and the label name in LVIS category
taxonomy.

ferent environment lighting conditions. For the 15 object
recordings that are used in our benchmark evaluations, we
highlight them in bold.
• Airplane B097C7SHJH WhiteBlue
• Airplane B0B2DC5QBP BlueGray
• BirdHouse
• BirdHouse B0B8F27TFK BrownRoofYellowWalls
• BirdHouseRedRoofYellowWindows
• BirdHouseWoodenRoofGreenWall
• Bowl B0BQR77WRW LightGrey 1 TU
• Box ADTIR DecorativeBoxHexLarge Green
• Car 38330969 Toy
• CaramicBowlBluewithBrown
• CeramicBowlBigWhite
• Cup B08TWHJ33Q Tan
• Cup B0B3JKZW76 Brown



Figure 9. Examples of DTC 3D models. The PBR Materials of each object are presented in the following figures from Fig. 10 to Fig. 14.

• Cup B0CQXPND8L Stripes
• Dutch Oven B0B916N11D Black
• Figurine B08FYFNYP4 LionKing
• Figurine B0983CQ2HH Angel
• Figurine B0CR3Y5T3K Gnome
• Gargoyle B005KDPAFW BatWings
• Gargoyle B08SQMBDXY HandsOnKnees
• Gargoyle B0C2PNF2C1 Meditating

• Gravestone B08TBJQ5XP LightGrayKitty
• Hammer B000FK3VZ6 Wood
• Home ADTIR A6116F6 DraganBoxSmall Wood
• Home ADTIR L041OV8 Rinnig PlateHolder
• Keyboard B07P6K5GMY Black
• Keyboard B0CL8S2DW9 Pink
• Kitchen Spoon B008H2JLP8 LargeWooden
• Mallard B082D168CK MintGreen



Figure 10. PBR Materials of the example DTC objects (the list of objects in Fig.9 Row 1), From left to right: albedo map, roughness map,
metallic map, normal map, and PBR rendering.

• Mallard B09LV16HD5 LightBrown2
• Mallard B0BPY18VHR White
• Mallard B0C6MQWM21 BlackWhite
• Mouse B0CHNVBBLF Honeycomb 1
• Pan B0CFQWYJZ8 BlackWoodHandle
• Pan B0CHW1KK8Z Black
• Planter B0C4G81ZPF Cat
• Pottery B097S319TR Woman
• Pottery B0CJJ59SLH BlueHairFairy

• Shoe B000ZP6MIY Navy7L TU
• Spoon B08M3XNKYR Slotted
• TeaPot B074ZQYRP7 BrownDragonShaped
• TeaPot B07GL8MH3X PinkFlamingo
• TeaPot B07QP5MFQ1 BlackCastIron
• TeaPot B084G3K8TD YellowBlackSunflowers
• TeaPot B08HSDHBM4 BlackGoldLeaves
• TeaPot B00ESU7PFG WhiteRoseFlowers
• TeaPot B01KFCZB2Y WhiteWoodHandle



Figure 11. PBR Materials of the example DTC objects (the list of objects in Fig.9 Row 2). From left to right: albedo map, roughness map,
metallic map, normal map, and PBR rendering.

• Vase B09ZGXSVTT White TU
• Vase B0BV44B4R4 BlueBirdsYellowBirds
• Vase Corrected

A.3. List of Models for Egocentric Evaluation Data
The full list of models selected that contains pairs of egocen-
tric data is as follows, and each model is captured with both
active and passive trajectories. For the 15 object recordings
that are used in our benchmark evaluations, we highlight

them in bold.

• Airplane B097C7SHJH WhiteBlue
• Airplane B09WN2RN15 Black 1
• BasketPlasticRectangular
• BirdHouseToy
• BirdHouse B0B8F27TFK BrownRoofYellowWalls
• BirdHouse B004HJE8AS WhiteWallsTwoPorches 2
• BirdHouseRedRoofYellowWindows
• BirdHouseWoodenRoofGreenWall



Figure 12. PBR Materials of the example DTC objects (the list of objects in Fig.9 Row 3). From left to right: albedo map, roughness map,
metallic map, normal map, and PBR rendering.

• BirdHouse B08GYBKJ8N RedBarn
• Birdhouse B09FJYJYDQ BoatHouse
• BirdHouseMetalRoofYellowWall 1 TU
• BirdHouse A79823645 BearWithLogStump
• BirdHouseWoodenRoofRedWall
• BlackCeramicDishLarge
• BlackCeramicMug
• Block B007GE75HY RedBlue
• Bowl B0BQR77WRW LightGrey 1 TU

• Bowl B07ZNJ5RQV Orange TU
• CandleDishSmall
• CrateBarrelBowlRed
• CeramicBowlBigWhite
• CelebrateBowlPink
• Car 38330969 Toy
• CaramicBowlBluewithBrown
• Candle B0B2JQWNNQ White
• Candle B0B764F39X Turquoise



Figure 13. PBR Materials of the example DTC objects (the list of objects in Fig.9 Row 4). From left to right: albedo map, roughness map,
metallic map, normal map, and PBR rendering.

• Candle B09MP8NDML White
• Calculator B0C7GP2D5C Purple
• Cup B08TWHJ33Q Tan
• Cup B0B3JKZW76 Brown
• Cup B0CQXPND8L Stripes
• Cup B08TWHJ33Q Gray
• Cup B09QCYR1SL Pitcher 1
• Cup B01LYONYPB SkyBlue
• Dumbbell B00PY62Y90 Black

• Dumbbell B0CN56CQPS PurpleCoolGray
• Dutch Oven B0B916N11D Black
• FakeFruit B076H96CS1 Banana
• FakeFruit B09992T572 WatermelonSlice
• FakeFruit B0815W7RKC StarFruit
• Figurine B08FYFNYP4 LionKing
• Figurine B0983CQ2HH Angel
• Figurine B0CR3Y5T3K Gnome
• Flask



Figure 14. PBR Materials of the example DTC objects ((the list of objects in Fig.9 Row 5)), From left to right: albedo map, roughness map,
metallic map, normal map, and PBR rendering.

• Gargoyle B07GHVQ3C4 BatCat
• Gargoyle B08SQMBDXY HandsOnKnees
• Gargoyle B0C3RQ5254 Bronze
• Gargoyle B0BYTQT173 Dragon
• Gargoyle B0C2PNF2C1 Meditating
• Gargoyle B00N08IU24 Dog
• Gravestone B08TBJQ5XP LightGrayKitty
• Gravestone B07WDGH3NR GrayAngel
• Hammer B000FK3VZ6 Wood

• Hammer B0BN6FXDQ7 BlueHandle
• Hammer B01N63ONKY DrillingSledge
• Kitchen Cup B09G2WNN61 DarkBlue
• Kitchen Spoon B008H2JLP8 LargeWooden
• Kitchen Spoon D146567C Green 1
• LargeLightGreyDish
• Mallard B082D168CK MintGreen
• Mallard B09LV16HD5 LightBrown2
• Mallard B0BPY18VHR White



• Mallard B0C6MQWM21 BlackWhite
• Mallard B00RTSJU7K Red
• Mouse B0CHNVBBLF Honeycomb 1
• Pan B0CFQWYJZ8 BlackWoodHandle
• Pan B0CHW1KK8Z Black
• Planter B0C4G81ZPF Cat
• PlasticBowlGreen 1 TU
• Pottery B097S319TR Woman
• Pottery B0CJJ59SLH BlueHairFairy
• Pottery B07TGC6TGL White
• Pottery B075SX9GVK White
• Pottery B0CF8FW987 Man
• Shoe B000ZP6MIY Navy7L TU
• Shoe B094ZCQK75 Red6HL TU
• Spoon B08M3XNKYR Slotted
• TeaPot B074ZQYRP7 BrownDragonShaped
• TeaPot B07GL8MH3X PinkFlamingo
• TeaPot B07QP5MFQ1 BlackCastIron
• TeaPot B084G3K8TD YellowBlackSunflowers TU
• TeaPot B08HSDHBM4 BlackGoldLeaves
• TeaPot B00ESU7PFG WhiteRoseFlowers
• TeaPot B01KFCZB2Y WhiteWoodHandle
• TeaPot B07RT7BYXL WhiteSnowOwl TU
• Vase B09ZGXSVTT White TU
• Vase B0BV44B4R4 BlueBirdsYellowBirds
• Vase Corrected
• Vase B0BNX2CWW8 YellowTall
• Vase B00858OOXI Green 1
• Vase B09FYBCM1R BeeSunflowers
• Vase B0BY8PYLLC PinkPineapple
• Vase B0BNX2CWW8 YellowShort
• WhiteContainerBox
• WhiteClip 1
• WoodBlocks B00FIX22YQ BlueArch
• WoodBlocks B098PHYN3P SmallOctagon
• WoodenBoxSmall
• WoodenFork

A.4. An Example of DSLR Data

As described in Sec. 3.3, we used three DSLR cameras
mounted on a rig to capture 360-degree inward-facing pho-
tos of each object. As shown in Fig. 15, these DSLR cameras
were positioned at different elevation angles and captured
images circularly around the object with a 9-degree interval
between shots. Each camera captured 40 photos, resulting in
a total of 120 photos per object. For each photo, we provide
the corresponding camera pose and an accurate foreground
object mask (2nd row overlaid on the original image in
Fig. 15) to facilitate straightforward and reliable evaluation.
Additionally, to support the evaluation of relightable recon-
struction, we utilized a mirror ball to capture and reconstruct
an HDR environment map (bottom row in Fig.15).

Figure 15. Example DSLR evaluation data: captured images with
3 DSLR cameras from different elevation angles (first row), the
object mask overlaid on each image (second row) and the recovered
HDR envmap (last row).

A.5. An Example of Egocentric Data

Fig. 16 provides an example visualization of the egocentric
recording observed from its RGB camera and the rendered
ground truth using the 3D aligned digital twin model using
the method described in Sec. 3.4. The raw RGB input from
Project Aria is a wide angle fisheye camera, which limits
the amount of existing off-the-shelf baselines using pin-hole
camera models. To resolve this limitation, we rectify all the
raw images using a linear camera model, and render the cor-
responding ground truth of the linear camera model as well.
All the evaluations on egocentric recordings are performed
using the linear rectified images as input and output. We
use the focal length 1200 and 2400x2400 resolution which
retains the original pixel resolution and field of view from
the raw image input.

It is worth noting the image input from Project Aria is
gravity aligned. Both the raw image and rectified image will
appear as 90 degree counter-clock wise rotated according to
the gravity direction without explicitly updating the camera
calibration information. For the reconstruction and evalua-
tion, we do not rotate the image or update the calibration.
We only rotate the rendered images 90 degree clockwise for
the benefit of visualization purpose (e.g. Fig. 22)

We provided two different type of recordings to bench-
mark reconstruction from egocentric views. Fig. 17 shows a



Figure 16. An example of visualization for the egocentric recordings. From left to right, we present the original egocentric view from the
fisheye RGB camera input, the rectified image view, object mask, rendered depth, and rendered normal. The egocentric recording are gravity
aligned respect to the global trajectory coordinate. We use the rectified image for all evaluations.

Figure 17. An snapshot visualization of the active (above) and
passive (below) of egocentric recordings in the 3d space. The left
of image shows the trajectory (visualized in Violet color) of the
camera movement in each scenario. The yellow points are the scene
point cloud.

snapshot of the egocentric recording. We demonstrate each
type of camera trajectory overlaid in the 3D space using the
scene point cloud. The active trajectory represents a com-
mon object-centric 360 view of the objects while the passive
trajectory represents a more casual walk around the object
from different distances.

B. Complementary Benchmarks
In this section, we provide complementary results on the
different applications of benchmarking in Sec. 4. First, we
include the qualitative comparisons of baselines in the in-
verse rendering application using the DTC dataset. We use
the same baselines described in Sec. 4.1. Second, as indi-
cated in the main paper, we include a new baseline evaluation

for sparse-view reconstruction in Sec. B.2 for DSLR data
and Sec. B.3 for egocentric data. Third, we present the
qualitative comparisons of egocentric active reconstruction
baselines described in Sec. 4.2.

Explanations on Evaluation Metrics. In Sec. 4.1, we eval-
uate the quality of geometry reconstruction by comparing
the rendered depth maps, normal maps, and predicted 3D
meshes to the ground truth. For depth maps, we use the Scale-
Invariant Mean Squared Error (SI-MSE) as the evaluation
metric. Normal maps are evaluated using Cosine Distance,
and for the 3D meshes, we compute the Bi-directional
Chamfer Distance between sampled surface points. For
novel view synthesis and novel scene relighting, we utilize
widely adopted metrics: Peak Signal-to-Noise Ratio for both
HDR (PSNR-H) and LDR (PSNR-L), Structural Similarity
Index Measure (SSIM) [67], and Learned Perceptual Image
Patch Similarity (LPIPS) [86]. We follow PhySG [82] and
adapt all these metrics to be scale-invariant, addressing the
ambiguity in material and lighting decomposition. We use
the same metrics for novel-view synthesis in the egocen-
tric novel-view synthesis applications as well. The same
evaluation metrics are used in StanfordORB [39].

B.1. Inverse Rendering Baseline Comparisons

We provide qualitative comparisons as a supplement to the
inverse rendering baseline comparisons in Sec. 4.1. Our
DTC dataset contains objects with varying geometric com-
plexity, ranging from simpler ones, e.g., cups (Fig. 18 Right),
to complex ones, e.g., toy birdhouses (Fig. 18 Left). The
surface material ranges from diffuse ones, e.g., toy houses,
to highly reflective ones, e.g., cups. For the two examples in
Fig. 18, we observed that methods using surface-based repre-
sentations, i.e., PhySG and InvRender, and hybrid represen-
tations, i.e., NVDiffRec and NVDiffRecMC, tend to produce
smoother geometry compared to methods using NeRF [52]-
based representations, i.e., Neural-PIL and NeRD.
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Figure 18. Qualitative Comparisons of Baseline Methods. We show qualitative comparisons of baseline methods, used in Table 2, on two
different DTC models BirdHouseToy (Left) and Cup B08TWHJ33Q Tan (Right).

Table 6. Quantitative evaluation of trained LRM-VolSDF baseline
for view synthesis on GSO dataset with different number of images.
It achieves the state-of-the-art performance compared to prior work.

LRM-VolSDF PSNR (→) SSIM (→) LPIPS (↑)
MeshLRM [70] 28.13 0.923 0.093
4 images 28.72 0.940 0.070
8 images 30.19 0.947 0.061

Table 7. Quantitative results on novel view synthesis for sparse-
view reconstruction using DTC DSLR data.

PSNR-H (→) PSNR-L (→) SSIM (→) LPIPS (↑)
LRM-VolSDF 20.53 21.16 0.993 0.006

B.2. Sparse-view Reconstruction Application for
DSLR data

We provide a sparse-view reconstruction baseline on our
DSLR data using learning based reconstruction method. To
build the baseline, we train an LRM model similar [70]
that achieves state-of-the-art mesh reconstruction results as
demonstrated on public synthetic dataset on GSO[21] dataset

Prediction Ground-truth Prediction Ground-truth

Figure 19. LRM view synthesis results from DSLR data.

in Table 6.

LRM baseline Our LRM baseline has the same transformer
architecture and tri-plane representation as [70]. It consists
of 24 self-attention blocks with feature dimension 1024 and
16 heads of attention. The tri-plane token number is 32→ 32.
Each token is decoded to a 8 → 8 feature patch through a



Figure 20. Example input data of egocentric sparse-view recon-
struction. We used the masked pixels from the rectified egocentric
passive data as input. Some objects can appear very small due to the
challenges in free-view movement in egocentric passive trajectory.

Table 8. Quantitative results on novel view synthesis for sparse-
view reconstruction using egocentric passive data.

PSNR-H (→) PSNR-L (→) SSIM (→) LPIPS (↑)
LRM-VolSDF 20.03 21.72 0.971 0.065

linear layer, which leads us to final tri-plane resolution of
256→ 256. During training, our LRM directly outputs SDF
value instead of density and we use the volume ray tracing
method proposed in [78] to render images for supervision.
Compared to the NeRF representation used in [70], our LRM
baseline is robust to train and can achieve accurate geometry
reconstruction. We evaluate our LRM-VolSDF baseline on
synthetic GSO dataset. Results are summarized in Table
6. With 8 input views, our baseline achieves reconstruction
accuracy comparable to the state-of-the-arts.
Experiments and evaluation We randomly sample 16 im-
ages from the 120 training views as inputs to our LRM-
VolSDF network. The testing view is the same as the dense-
view inverse rendering experiments. The quantitative num-
bers for view synthesis are summarized in Table 7. We ob-
serve that all three metrics are much worse compared to the
results from synthetic GSO dataset, indicating the existence
of a domain gap between synthetic and real data. Fig. 19
visualize some of our reconstruction results. We observe that
for relative simple shape, our model generalizes well and
achieves highly detailed reconstruction that closely match
the ground-truths. However, it struggles at reconstructing
more complicated object, such as the Birdhouse. Further
investigation is required to understand the gap on real world
dataset.

B.3. Sparse-view Reconstruction Application for
Egocentric data

We use the egocentric passive recordings in this evaluation,
which is a challenging sparse-view reconstruction setting
where we only have casual observation of an object captured
by an egocentric RGB camera. Compared to the sparse-
view reconstruction for DSLR data where the object always

Prediction Ground-truth Prediction Ground-truth

Figure 21. LRM view synthesis results from egocentric data.

appear in the image center and occupies a large portion of the
image, the egocentric recording has natural human moving
trajectory and object can appear small in many views.

Fig. 20 shows several examples of the masked objects that
we use as input to this evaluation. We can see the camera
poses are much more diverse and object only occupies a very
small portion of the image. This setting will defy any classi-
cal optimization-based 3D reconstruction method. We build
a baseline using the same LRM-VolSDF model as mentioned
in Sec. B.2. We tested the model on the challenging data
without any fine-tuning.
Experiments and Evaluation. For each sequence, we ran-
domly sample 24 views from the middle 1/3 of the whole
sequence as this is when our Aria glasses are relatively close
to the object. We use 16 of the 24 views as inputs and 8 views
as ground-truth for testing. Similar to the DSLR experiment,
we use centralized cropping to place the object in the cen-
ter of the image and modify the plucker rays representation
accordingly. Qualitative and quantitative results are sum-
marzed in Fig. 21 and Tab. 8 respectively. We observe that
despite that the camera poses distribution of input views is
very different from our training data, the LRM-VolSDF gen-
eralizes to the new type of input data. Our PSNR numbers
for the masked region are much lower than those of synthetic
data but still achieve reasonable performance. We calculate
the LPIPS and SSIM based on the full image which results
in higher numbers. This evaluation expose the domain gap in
learning based reconstruction map for egocentric data input.
We hope our current experimental results can be a promising
starting point.

B.4. Dense-view Reconstruction for Egocentric data
As a complement to Sec. 4.2, we provided qualitative com-
parisons of novel view synthesis in Fig. 22. We rendered
the depth from both baselines in a normalized depth range.
For 3D-GS, we acquire the normal from its point cloud ray
casted from each pixels. For 2D-GS, we directly use the
predicted normal from the rasterizer.
Results analysis: Both 3D-GS[37] and 2D-GS [31] can



Figure 22. Qualitative comparisons of baselines reconstructions on egocentric recordings. We compare 3D-GS[37] and 2D-GS[31] to the
ground truth using the modalities of rendered images, depth and normal. Both baselines can provide near photoreal view synthesis on the
held-out validation view compared to ground truth. However, the comparison in their geometry (depth and normal) indicate the existing
methods still fall short to recover the details in digital twin reconstruction. For the benefit for visualization, we rotate all the images 90
degree clockwise.

provide near photo-real view synthesis of the objects with
high quality view-dependent effect. 3D-GS perform slightly
better in PSNR metric consistent across all objects. In terms

of shape reconstruction, 2D-GS performs better in particular
to recover surface normals. Compared to the ground truth
rendering, the estimated depth from 3D-GS is significantly



noiser which also leads to visible artifacts in its normal map,
while the 2D-GS tends to predict smoother depth and normal
and can ignore certain details. For objects with simple shape
(e.g., Teapot B00ESU7PFG WhiteRoseFlowers),
both methods perform well. However, for objects
with complex shapes, both methods fail to recover
the complex geometric details in the object shape (e.g.,
BirdHouse B0B8F27TFK BrownRoofYellowWalls).
The challenge in shape reconstruction indicates the direction
for future research work in this area.

C. Experimental Details For Robotic Experi-
ments

C.1. Experimental Objects

The specific objects that we use from the DTC and Objaverse-
XL datasets 2 are as follows:

DTC dataset:
• Cup B01LYONYPB SkyBlue
• Cup B0BR43SPKJ Blue
• Cup B0CJBZT7N5 Black
• Cup B0CMPB8FNY MountainBluebell
• Cup B0CYL5PSR3 Gray
• Cup B08PTSRWF8 Green
• Cup B0CMD4LX4D DarkBlue
• Cup B08TWHJ33Q Tan
• Cup B0CNJP2KZF GreenOrange
• Cup B094NQH2YM BlackGold
• Cup B0BXB21T7Q Blue
• Cup B0CPX832ZP Floral
• Cup White
• Cup B09L8DS2ZB DarkBrown
• Cup B0C3X3WY2Q SageGreen
• Cup B0CQTF6GF1 RedWhite
• Cup B09QCYR1SL Pitcher 1
• Cup B0C81BCSXQ WhiteRainbow
• Cup B0CQXPND8L Stripes
• Cup B09YDPVRM7 RedTeaCup
• Cup B0CDWXPDK1 Zebra
• Cup B0CR45H24G Blue
• Cup B0B3JKZW76 Brown
• Cup B0CHJYN6F1 Black

For Objaverse-XL, we collect a subset of 24 objects by
filtering objects by the STL file format and by the word cup
appearing in the provided metadata tags, and then manually
filtering the results by inspecting the object files to only
include objects that can be considered “cups” by a human
judge.

2The version of Objaverse-XL used in this work excludes all 3D models
sourced from Sketchfab.

C.2. Simulation and Data Collection
When importing objects into the PyBullet simulator, we ob-
tain separate collision meshes by performing convex decom-
position of each object with CoACD [69] with a concavity
threshold of 0.01, and rescale each object to have a maxi-
mum bounding box side length of 0.137 m (to match that of
the test object). Since not all Objaverse-XL objects come
with textures, we randomly color Objaverse-XL objects uni-
formly in RGB space.

For data collection, we uniformly randomly select one
object from the considered object set to be placed into the
scene. We uniformly randomly place the object within a
0.4 → 0.4 m box centered at the scene origin at a z height
of 0.10m, and allow it to fall to the floor workspace. If
the object rolls away (further than a 0.8 → 0.8 m bound),
we re-sample the initial position and re-attempt the object
placement.

Pushing: For pushing, we generate pseudo-random
trajectories by executing a scripted policy in two stages:
First, the robot samples a starting position from the push
by randomly sampling an angle ω and radius r. It then
takes steps to move its end-effector to the x-y location
(xobj + r sin(ω), yobj + r cos(ω)), where (xobj , yobj) is the
initial object position. After reaching within 2cm of this lo-
cation, the robot begins to push the object, by moving from
its current end-effector position toward the object location.
All steps are normalized to have a magnitude of 0.03m, and
the action at each step is affected by uniform random noise
drawn from U(↑0.05, 0.05) in each axis. The trajectory
ends after 35 steps.

Grasping: For grasping, we generate successful grasps
by sampling grasping candidates and filtering only the suc-
cessful ones. After adding an object to the scene, we uni-
formly randomly sample a grasping position (x, y, z) where
x = xobj + U(↑0.05, 0.05), y = yobj + U(↑0.05, 0.05),
z = 0.2 + U(↑0.1, 0.1) where (xobj , yobj) is the initial ob-
ject position. The robot then performs four steps: (1) It
moves in the air to the target grasp position x, y coordinates,
(2) it moves vertically downwards to a height of z, (3) it
closes the gripper, and (4) it lifts to a height of 0.5m. The
grasp is considered successful if the object is at least 0.1m
above the floor after step (4).

C.3. Policy Training
We train convolutional neural network policies to regress
actions representing xy position changes and the (x, y, z, ω)
grasp position for pushing and grasping respectively. For
pushing, we train goal-image-conditioned policies, relabel-
ing goals using a hindsight sampling mechanism. We sample
goals uniformly randomly from future timesteps in the tra-
jectory of a sampled initial state, and use the first action after
the initial state as the label.

We use similar architectures for pushing and grasping.



The architecture consists of an encoder and an MLP head
for action prediction. Below we describe the architecture for
goal-conditioned pushing, with differences for the grasping
policy noted. The input image size for both initial and goal
images is 256→ 256→ 3.

For pushing, we normalize action labels by multiplying
each dimension by 100, and for grasping, we normalize the
last dimension (grasp angle) by dividing by 10 such that it
has similar magnitudes to the other action label dimensions.

Encoder:
• Conv2d(3, 32, 3, stride=2, padding=1)
• ReLU
• Conv2d(32, 64, 3, stride=2, padding=1)
• ReLU
• Conv2d(64, 64, 3, stride=2, padding=1)
• ReLU
• Flatten
• Linear((image size/8)2 → 64, 512)
• ReLU

Note that for the pushing policy, the observation and goal
image share encoder weights.

Action Prediction Head:
• Linear(512 → 2, 256) (the input feature dimension is
512 for grasping, which has a single image input as op-
posed to 1024 and two image inputs for pushing, which
have their features concatenated together).

• ReLU
• Linear(256, 256)
• ReLU
• Linear(256, 2) (for grasping, the final output size is
4)
We train policies using a mean-squared-error loss using

the Adam optimizer with a learning rate of 3e ↑ 4 and a
batch size of 32, holding out 5% of the data for validation.
We train for 200 epochs and take the checkpoint with lowest
validation loss for evaluation. Training uses a single NVIDIA
Titan RTX GPU.

C.4. Evaluation
For evaluation, we generate test sets of 100 initial conditions
for each task using the “cup scene003” object from the
StanfordORB dataset. For pushing, we generate trajectories
in the same way as during data collection and use the initial
state and final state as the initial condition and target goal for
the policy. We roll out the policy for 35 steps and compute
the final position error of the object in the x, y dimensions.
For grasping, we generate initial object positions in the same
way as in data collection and the policy performs a single
grasp attempt, which is determined successful if the object
ends at least 0.1m above the working surface.

In Figure 8, we present detailed results for the pushing
experiments, plotting the success rates for each policy with
respect to varying success thresholds based on final object

position error.
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