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Supplementary Material

1. Appendix Section
The supplementary material mainly includes the following
contents:
• The specific structure of certain used networks;
• More detailed explanations of our proposed methods;
• More detailed explanations of the experimental settings;
• Additional experimental results and detailed analysis;
• Limitations and future work of our method.

Figure 1. Detailed network structures of the CLIP image encoder
and the proposed Feat-D.

2. Detailed Network Structures.
As described in the main document, considering that CLIP
[14] can extract more interpretable, semantic-aware and
quality-relevant features [4, 5, 9, 16], we select CLIP’s im-
age encoder as the semantic feature extractor and employ
the proposed feature discriminator (Feat-D) and text-guided
discrimination (TG-D) to perform discrimination on the se-
mantic features. As shown in Fig. 1, we present detailed
network structures of the CLIP image encoder and the pro-
posed feature discriminator (Feat-D). We select the pixel-
wise semantic features Fm1, Fm2, Fm3 after Layer1, Layer2,
and Layer3 of the CLIP image encoder, as well as the more
abstract final output features Fout, then Feat-D and TG-D is
used to perform discrimination on them respectively.

As for Feat-D, it begins with a combination of an up-
sampling layer, a LeakyReLU activation function, and a
convolutional layer. The upsampling layer consists of a con-
volutional layer, a LeakyReLU activation function, a 2 ×
bilinear interpolation, and another convolutional layer. Fm3

is processed through this combination and then concatenated

with Fm2. The concatenated features are processed through
another combination of upsampling, LeakyReLU, and con-
volution and subsequently stacked with Fm1. Finally, Feat-D
ends with an upsampling layer followed by four combina-
tions of LeakyReLU and convolutional layers. Notably, each
convolutional layer in the Feat-D structure is followed by
a spectral normalization. Our Feat-D is able to perform
fine-grained discrimination on the 3 pixel-wise middle se-
mantic features Fm1, Fm2, Fm3 extracted from CLIP image
encoder, encouraging the SR network to learn more accurate
distributions of high-quality image semantic features.

3. More Analysis for Feat-D

To demonstrate the effectiveness of our Feat-D in semantic
awareness, we have used t-SNE [15] to visualize the mid-
dle features of the VGG-style vanilla discriminator and our
Feat-D in main text. Furthermore, we also visualize some
features of two convolutional layers in SRN: one before up-
sampling and one after upsampling. As shown in Fig. 2, the
intermediate semantic features of the SRN trained with our
method are richer and clearer than ESRGAN which directly
discriminates on images. In addition, we also use t-SNE to
further explore the effectiveness of Feat-D in image quality
assessment. We visualize the middle features of the vanilla
discriminator, the CLIP image encoder, and our Feat-D. We
classify the IQA dataset KonIQ10K [6] according to the la-
bel scores of the images, divide them into 5 categories every
20 points, and then randomly select 100 images in each cate-
gory. We then fed all the images into the VGG-style vanilla
discriminator, the CLIP Image encoder (RN50) and our Feat-
D. We visualize the features after the 2nd BN layer of the
vanilla discriminator, the features after Layer1 of CLIP im-
age encoder, and the features after the 3rd upsampling layer
of Feat-D, respectively. As shown in Fig. 3, the features of
vanilla discriminator and CLIP image encoder are almost
completely chaotic, while the features of Feat-D are more
orderly and can distinguish images with different quality
fractions more clearly, which proves that the image quality
correlation of Feat-D features is much stronger. Our Feat-D
takes the features of CLIP image encoder as input, so this
also shows from another point that Feat-D can strengthen
the quality correlation of the semantic features of CLIP.

4. More Explanation for TG-D

Apart from the middle features Fm1, Fm2, Fm3 of CLIP
image encoder, discriminating the final output feature Fsout



Figure 2. The feature visualization of two convolutional layers in SRN trained with ESRGAN and our SFD, respectively.

Figure 3. The t-SNE visualization of vanilla discriminator features, CLIP features and our Feat-D features. We divide the images from IQA
dataset KonIQ-10K [6] into 5 categories according to their label scores, and randomly select 100 images for each category. The 5 categories
of scores are “0-20”, “20-40”, “40-60”, “60-80”, “80-100”, respectively.

which is more global and abstract is expected to further
enhance the overall performance of our method. Before
utilizing the learnable prompt pairs (LPP) to discriminate
Fout, we have also considered other approaches. A simpler
and more straightforward method is to adopt fixed antonymic
text prompts (e.g., “Good photo” and “Bad photo” used in
CLIPIQA [16]) to calculate the similarity scores between
the image features of Fout and text features of antonymic
text prompts. Then, two different approaches can be used to
constrain the SR network’s training process: maximizing the
similarity scores of the SR images or making the similarity
scores of the SR images closer to that of the HR images.
We temporarily name the above method as CLIPIQA Loss.
However, as illustrated in Fig. 4, we observe that the model
trained with CLIPIQA loss will exhibit “mode collapse”

when directly applied to some images, SRN may output SR
images with anomalous pixel regions during testing. This is
probably because that the IQA performance of CLIPIQA is
limited due to the ambiguity of human language and CLIP’s
sensitivity to prompt selection, and a higher CLIPIQA score
can’t always represent higher perceptual image quality. In
contrast, we introduce the learnable LPP in an adversarial
learning manner to avoid the issues caused by text selection,
and SRN trained with our method do not exhibit the “mode
collapse” phenomenon.

5. More Experiment Results

More implementation details. During training, HR images
is randomly cropped into 128 × 128 patches with batch size



Figure 4. The “mode collapse” in SR images: SR networks trained
with CLIPIQA loss may output anomalous pixel regions during
testing on some datasets.

Table 1. Quantitative comparison of our method vs. other SOTA
methods for ×4 SR task. The best and the second-best are marked
in red and blue, respectively.

Benchmark Metric ESRGAN LDL DualFormer SeD-P RRDB SwinIR SwinIR
[17] [10] [11] [9] +Ours +LGAN +Ours

BSDS100

PSNR ↑ 25.33 25.97 26.59 26.38 26.90 25.58 27.06
SSIM ↑ 0.653 0.682 0.696 0.692 0.710 0.676 0.717
LPIPS ↓ 0.161 0.153 0.161 0.150 0.161 0.157 0.160
DISTS ↓ 0.116 0.118 0.120 0.117 0.121 0.122 0.118

Manga109

PSNR ↑ 28.41 29.62 29.90 29.99 30.36 29.35 30.91
SSIM ↑ 0.860 0.873 0.886 0.888 0.893 0.880 0.902
LPIPS ↓ 0.065 0.054 0.053 0.048 0.048 0.054 0.045
DISTS ↓ 0.047 0.036 0.038 0.036 0.035 0.037 0.032

of 32 for classical SISR, and 256 × 256 patches for real-
world SISR and OU NR-IQA. We initialize the parameters
of RRDB with the pre-trained fidelity-oriented model. We
use Adam [8] optimizer to train the network with a initial
learning rate of 10−4. The hyperparameters λ1, λ2, λ3, λ4

in total loss are set to 0.01, 1, 0.01, 0.005 for classic SISR
and 1, 1, 0.1, 0.005 for real-world SISR, respectively. The
length and number of learnable prompt pairs are set to 32
and 5 for classic SISR, as well as 64 and 1 for real-world
SISR and OU NR-IQA. The weight coefficients α1 and α2

in the SFD-IQA process are set to 0.9 and 0.1, respectively.
More quantitative results for perceptual SISR. In

Tab. 1, we present more quantitative results that can not be in-
cluded in the main document due to space limitations, includ-
ing results on BSDS100 [12] and Manga109 [13] datasets
for classical SISR. Our method achieves the best PSNR and
SSIM scores on all datasets while maintaining highly com-
petitive perceptual metrics. This indicates that our method
can achieve better PD trade-off, sacrificing less fidelity in
exchange for improved perceptual image quality.

More qualitative results for perceptual SISR. We
provide more qualitative comparisons with state-of-the-art
(SOTA) GAN-based SR methods on both classical and real-
world SISR tasks. As shown in Fig. 5, Fig. 6, Fig. 7, and
Fig. 8, our method outperforms others by more accurately
recovering fine-grained textures, especially in challenging
details such as fur, buildings, and text, while producing fewer
artifacts. This strongly demonstrates that our method effec-

Table 2. Ablation studies on different semantic feature extractors.

Extractors Set5 [2] DIV2K100 [1]

PSNR ↑ LPIPS ↓ DISTS ↓ PSNR ↑ LPIPS ↓ DISTS ↓
RN50 31.63 0.063 0.098 29.75 0.097 0.053

ViT-B/16 31.32 0.068 0.103 29.21 0.115 0.061

tively encourages the SR network to learn more fine-grained
semantic feature distributions, leading to the generation of
more realistic SR images.

The effects of the different semantic feature extractors.
To investigate the impact of different semantic feature extrac-
tors on our method, we conduct ablation experiments with 2
different semantic feature extractors of CLIP. Notably, since
the feature scale of ViT-based extractior is different from
that of ResNet-based extractiors, we only conduct ablation
experiments on TG-D for ViT-based extractor. As shown in
Tab. 2, our methods based on RN50 extractor outperform
that of ViT-based extractor in terms of both perceptual qual-
ity and fidelity. This is because CNN-based extractor can
extract semantic features with more positional information,
which is more beneficial for low-level vision.

More results and analysis for OU NR-IQA. In the
main document, we present a detailed comparisons of our
SFD-IQA with other OU NR-IQA methods across both SR
IQA datasets and authentically distorted IQA datasets. Our
SFD-IQA achieves the best results on all metrics across all
datasets. As explained in the main document, our SFD-
IQA benefits from the dual advantages of CLIP and super-
resolution discriminators, which explains its remarkable per-
formance in OU NR-IQA tasks. The effectiveness of our
method in the OU NR-IQA tasks also proves the discrim-
inative ability of the proposed Feat-D and TG-D, which
can encourage the SR network to learn more fine-grained
semantic feature distributions.

Based on the analysis in Sec. 4, we further discuss the
advantages of our SFD-IQA compared to CLIP-IQA. Due to
the limitations of CLIP-IQA, CLIPIQA’s ability to evaluate
the quality of certain images is inadequate. As shown in
Fig. 9, CLIPIQA will assign a wrong score for a SR im-
age with “mode collapse”, which is even higher than the
better-look GT image without “mode collapse”, this is ob-
viously unreasonable. In contrast, our SFD-IQA can better
distinguish between the high-quality and low-quality im-
ages and assign more reasonable scores for them. Since the
difference between the top row of images and the bottom
row of GT images is minimal except for small areas with
“mode collapse”, our SFD-IQA reasonably assigns similar
scores to corresponding images while accurately distinguish-
ing images with pixel anomaly regions using a certain score
difference. Moreover, compared to “Lenna” on the left and
“Pepper” on the right with lower overall perceptual quality,
our SFD-IQA assigns relatively higher scores to the more



Figure 5. More visual comparisons of different GAN-based SR methods on DIV2K [1] validation set for ×4 classic super-resolution.

natural and realistic image “Head” in the middle, which
better aligns with human visual perception. The above anal-
ysis further demonstrates the robustness of our SFD-IQA,
showcasing its superior OU NR-IQA ability.

6. Limitations and Future Work
By introducing Feat-D and TG-D to perform discrimination
on the semantic features from CLIP, we enable the SR net-
work to generate more fine-grained and more realistic texture
details, thereby achieving better perception-distortion trade-
off. Despite these benefits, there is still room for further
improving our method in balancing fidelity and perceptual
quality, and our approach increases the computational and
storage overhead during the training process. Additionally,
exploring more efficient ways to integrate the trained Feat-
D and LPP into the OU NR-IQA method is a worthwhile
direction for further research.
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