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6. Proof of Theorem 1.
Proof. Define y ∈ [0, 1]. A reparametrization of the path
l(y) is defined by a bijective strictly increasing function
r(y):[0,1]→ [0,1], denoted as l̃(y):=(l◦r)(y). Due to the fact
that Im(l)=Im(̃l),

T(l,ϵ)=T (̃l,ϵ′)⇒Lenv(l,ϵ)=Lenv(̃l,ϵ
′) (14)

Denote r′ as the derivative of r. Further we have

Lhomo(̃l)=

∫ 1

0

|∇yl(r(y))|2dy

=

∫ 1

0

|∇rl(r)|2|r=r(y)·|r′(y)|2dy

=

∫ 1

0

|∇rl(r)|2|r=r(y)·r′(y)2dy

=

∫ 1

0

|∇rl(r)|2·r′(y)dr

=

∫ 1

0

|∇rl(r)|2·s(r)dr,

(15)

where s = r′ ◦ r−1. This separates the dependence of
Lhomo on the reparametrization to a single weight function
s : [0,1]→R+.

Then we have

Lhomo(̃l)−Lhomo(l)=

∫ 1

0

|∇yl(y))|2(s(y)−1)dy. (16)

Now if the original curve is moving at constant speed, i.e.,
|∇yl(y)|=c, where c is a positive constant. In other words, the
data is uniformly distributed. Then

Lhomo(̃l)−Lhomo(l)=c2
∫ 1

0

(s(y)−1)dy

=c2
(∫ 1

0

s(y)dy−1
)
,

which means in this case the loss will increase if
∫ 1

0
s(y)dy>

1 and decrease otherwise. Since r is a bijection, we have∫ 1

0

s(r)dr=

∫ 1

0

s(r(y))r′(y)dy

=

∫ 1

0

r′(y)2dy

Since (r′(t)−r′(y))2≥0, t,y∈ [0,1], we have

0≤
∫ 1

0

∫ 1

0

(r′(y)−r′(t))2dtdy

=2

∫ 1

0

∫ 1

0

r′(y)2dydt−2
(∫ 1

0

r′(y)dy

)2

=2

∫ 1

0

r′(y)2dy−2

⇒
∫ 1

0

r′(y)2dy≥1,

where the inequality holds when r′(y) is a constant, since
r is bijective, r should be the function: r(y)=y. This means
l(y)= l̃(y),∀y. Therefore, we have

∫ 1

0
r′(y)2dy> 1, for l̃ ≠ l,

which means, the loss attains its minimum if and only if the
data is uniformly distributed.

7. Datasets
7.1. UCI-DIR

We curated UCI-DIR to evaluate the performance of imbalanced
regression methods on tabular datasets. Here, we consider four
regression tasks from UCI machine learning repository [2] (Air-
foil, Concrete, Real Estate and Abaleone). Their input dimen-
sions range from 5 to 8. Following the original DIR setting [25],
we curated a balanced test set with balanced distribution across
the label range and leave the training set naturally imbalanced
(Figure 8). We partitioned the label range into three regions
based on the occurrence. The threshold for [few-shot/med-shot,
med-shot/many-shot] are [10, 40], [5, 15], [3, 10] and [100,
400] for Airfoil, Concrete, Real Estate and Abalone respectively.

7.2. OL-DIR

We follow Lu et al. [14] for the basic setting of operator
learning. However, we change the original uniform sampling of
locations in the domain of the output function to three regions:
few, medium, and many regions.

For the linear operator defined in Equation (12), the input
function u is generated from a Gaussian Random Field (GRF):

u∼G(0,k(x1,x2)) (17)

k(x1,x2)=exp

(
−∥x1−x2∥

2

2l2

)
(18)

where the length-scale parameter l is set to be 0.2. For x, we
fix 100 locations to represent the input function u. The locations



Table 8. Overview of the six curated datasets used in our experiments

Dataset Target type Target range Bin size # Training set # Val. set # Test set

IMDB-WIKI Age 0∼186* 1 191,509 11,022 11,022
AgeDB-DIR Age 0∼101 1 12,208 2,140 2,140
STS-B-DIR Text similarity score 0∼5 0.1 5,249 1,000 1,000

*Note: wrong labels in the original dataset.

Figure 8. Overview of training and test set label distribution for UCI-DIR datasets.

in the output function ys are manually sampled from the domain
of G(u), such that few-shot region: y ∈ [0.0,0.2]∪ [0.8,1.0];
medium-shot region: y∈ [0.2,0.4]∪[0.6,0.8]; many-shot region:
y∈ [0.4,0.6].

We manually create an imbalanced training set with
many/medium/few-shot regions of 10k samples and a balanced
testing test of 100k samples.

For the nonlinear operator defined in Equation (13), the
input function is defined as:

b(x;ω)∼GP(b0(x),cov(x1,x2)) (19)

b0(x)=0 (20)

cov(x1,x2)=σ2exp

(
−∥x1−x2∥

2

2l2

)
(21)

where ω is sampled from a random space with Dirichlet
boundary conditions u(0) = u(1) = 0, f(x) = 10. GP is a
Gaussian random process. The target locations are sampled in
the same way as the linear task.

The number and split of the nonlinear operator dataset are
the same as those of the linear one.

7.3. AgeDB-DIR, IMDB-DIR and STS-B-DIR

For the real-world datasets (AgeDB-DIR, IMDB-WIKI-DIR
and STS-B-DIR), We follow the original train/val./test split
from [25].

7.4. Ethic Statements

All datasets used in our experiments are publicly available
and do not contain private information. All datasets (AgeDB,
IMDB-WIKI, STS-B, and UCI) are accrued without any
engagement or interference involving human participants and
are devoid of any confidential information.

8. Experiment Detail

8.1. Implementation Detail (Table 9).

8.2. Choices of N .

We investigate how varying N (the number of uniformly dis-
tributed points on a hypersphere used to calculate enveloping
loss) impacts the performance of our approach on the AgeDB-
DIR and IMDB-WIKI-DIR datasets (Table 10). To achieve
optimal performance, it is crucial to choose a sufficiently large
N . A smaller N might fail to cover the entire hypersphere ade-
quately, resulting in an imprecise calculation of enveloping loss.

8.3. Ablation on proposed components.

The Table 11 presents the results of an ablation study examining
the impact of different loss functions on the model performance.
As we mentioned before, the use of only homogeneity loss
(Lhomo) could lead to trivial solutions due to feature collapse.
Additionally, using only the enveloping loss (Lenv) causes
the features to spread out along the trajectory, resulting
in suboptimal performance. Through the contrastive loss
(Lcon), individual representations could converge towards their
corresponding locations on the surrogate. It is evident from
the Table 11 that the model incorporating all loss functions
outperforms the other configuration.

8.4. Computational cost

In this subsection, we compare the time consumption of the
Surrogate-driven Representation Learning (SRL) framework
with other baseline methods for age estimation and text
similarity regression tasks. The reported time consumption,
expressed in seconds, represents the average training time per
mini-batch update. All experiments were conducted using a
GTX 3090 GPU.



Table 9. Hyper-parameters used in SRL

Dataset IMDB-WIKI AgeDB-DIR STS-B-DIR UCI-DIR OL-DIR

Temperature (τ) 0.1 0.1 0.1 0.1 0.1
Momentum (α) 0.9 0.9 0.9 0.9 9.9

N 2000 2000 1000 1000 1000
λe 1e-1 1e-1 1e-2 1e-2 1e-1
λh 1e-1 1e-1 1e-4 1e-2 1e-1

Backbone Network (f(·)) ResNet-50 ResNet-50 BiLSTM 3layer MLP 3layer MLP
Feature Dim 128 128 128 128 128

Learning Rate 2.5e-4 2.5e-4 2.5e-4 1e-3 1e-3
Batch Size 256 64 16 256 1000

Table 10. Vary the number of N

N 100 200 500 1000 2000 4000 10000

AgeDB 7.78 7.55 7.37 7.31 7.22 7.22 7.22
IMDB-WIKI 7.85 7.78 7.72 7.69 7.69 7.69 7.72

Table 11. Ablation Studies, best results are bold

Lenv Lhomo Lcon MAE ↓ GM ↓

All Many Med Few All Many Med Few

7.67 6.66 9.30 12.61 4.85 4.17 6.51 8.98
✓ 7.87 7.01 8.99 12.90 5.12 4.56 6.11 9.39

✓ 7.52 6.63 8.69 12.63 4.85 4.27 5.90 9.48
✓ ✓ 7.50 6.73 8.53 11.92 4.81 4.37 5.49 8.29

✓ 7.55 6.73 8.47 12.71 4.79 4.24 5.68 9.42
✓ ✓ ✓ 7.22 7.38 6.64 8.28 4.50 4.12 5.37 6.29

Table 12 shows that SRL achieves a considerably lower train-
ing time compared to the LDS + FDS, while remaining compet-
itive with RankSim, Balanced MSE, and Ordinal Entropy. This
demonstrates SRL’s ability to handle complex tasks efficiently
without introducing substantial computational overhead.

Table 12. Average training time per mini-batch update (in seconds)
for age estimation (AgeDB-DIR) and text similarity regression
(STS-B-DIR) tasks, using a GTX 3090 GPU.

Method AgeDB-DIR (s) STS-B-DIR (s)

VANILLA 12.24 25.13
LDS + FDS 38.42 44.45
RankSim 16.86 30.04
Balanced MSE 16.21 28.12
Ordinal Entropy 17.29 29.37
SRL (Ours) 17.10 27.35

8.5. Impact of Bin Numbers

In our geometric framework, we employ piecewise linear inter-
polation to approximate the continuous path l. The granularity of
this approximation is determined by the number of bins used for
discretization, where finer binning naturally leads to smoother
interpolation. To empirically analyze the impact of bin numbers
(B) on model performance, we conducted extensive experiments
across both synthetic and real-world datasets. For the synthetic

OL-DIR dataset and the real-world AgeDB-DIR dataset, we
varied the number of bins across the label space. Note that for
AgeDB-DIR, the finest possible bin size is constrained to 1 due
to the discrete nature of age labels, while OL-DIR allows for
arbitrary bin sizes. The results are presented in Table 13.

Table 13. Impact of bin numbers on model performance

B 10 20 50 100 1000 2000 4000

OL-DIR (MAE ×10−3) 9.92 9.29 9.20 9.18 9.18 9.17 9.18
AgeDB-DIR (MAE) 7.44 7.38 7.31 7.22 - - -

8.6. Experiments on UCI-DIR (Table 14, 15, 16, 17)

Table 14. Complete results on UCI-DIR for Airfoil (MAE with
standard deviation), the best results are bold.

Metrics MAE

Shot All Many Med Few

VANILLA 5.657(0.324) 5.112(0.207) 5.031(0.445) 6.754(0.423)
LDS + FDS 5.761(0.331) 4.445(0.208) 4.792(0.412) 7.792(0.499)
RankSim 5.228(0.335) 5.049(0.92) 4.908(0.786) 5.718(0.712)
BalancedMSE 5.694(0.342) 4.512(0.179) 5.035(0.554) 7.277(0.899)
Ordinal Entropy 6.270(0.415) 4.847(0.223) 5.369(0.635) 8.315(0.795)
SRL (ours) 5.100(0.286) 4.832(0.098) 4.745(0.336) 5.693(0.542)

Table 15. Complete results on UCI-DIR for Abalone (MAE with
standard deviation), the best results are bold.

Metrics MAE

Shot All Many Med Few

VANILLA 4.567(0.211) 0.878(0.152) 2.646(0.349) 7.967(0.344)
LDS + FDS 5.087(0.456) 0.904(0.245) 3.261(0.435) 9.261(0.807)
RankSim 4.332(0.403) 0.975(0.067) 2.591(0.516) 7.421(0.966)
BalancedMSE 5.366(0.542) 2.135(0.335) 2.659(0.456) 9.368(0.896)
Ordinal Entropy 6.774(0.657) 2.314(0.256) 4.013(0.654) 11.610(1.275)
SRL (ours) 4.158(0.196) 0.892(0.042) 2.423(0.199) 7.191(0.301)



Table 16. Complete results on UCI-DIR for Real Estate (MAE with
standard deviation), the best results are bold.

Datasets MAE

Shot All Many Med Few

VANILLA 0.326(0.003) 0.273(0.005) 0.376(0.003) 0.365(0.012)
LDS + FDS 0.346(0.004) 0.325(0.002) 0.400(0.002) 0.335(0.023)
RankSim 0.373(0.008) 0.343(0.004) 0.381(0.008) 0.397(0.032)
BalancedMSE 0.337(0.007) 0.313(0.004) 0.398(0.009) 0.326(0.028)
Ordinal Entropy 0.339(0.007) 0.286(0.004) 0.421(0.005) 0.351(0.031)
SRL (ours) 0.278(0.002) 0.262(0.006) 0.296(0.005) 0.287(0.023)

Table 17. Complete results on UCI-DIR for Concrete (MAE with
standard deviation), the best results are bold.

Datasets MAE

Shot All Many Med Few

VANILLA 7.287(0.364) 5.774(0.289) 6.918(0.346) 9.739(0.487)
LDS + FDS 6.879(0.344) 6.210(0.310) 6.730(0.337) 7.594(0.380)
RankSim 6.714(0.336) 5.996(0.300) 5.574(0.279) 9.456(0.473)
BalancedMSE 7.033(0.352) 4.670(0.234) 6.368(0.318) 9.722(0.486)
Ordinal Entropy 7.115(0.356) 5.502(0.275) 6.358(0.318) 9.313(0.466)
SRL (ours) 5.939(0.297) 5.318(0.266) 5.800(0.290) 6.603(0.330)

8.7. Experiments on AgeDB-DIR

Training Details: In Table 18, our primary results on
AgeDB-DIR encompasses the replication of all baseline models
on an identical server configuration (RTX 3090), adhering
to the original codebases and training recipes. We observe a
performance drop in RankSim [6] and ConR [10] in comparison
to the results reported in their respective studies. To ensure a
fair comparison, we present the mean and standard deviation
(in parentheses) of the performances for SRL (ours), RankSim,
and ConR, based on three independent runs. We found SRL
superiors performance in most categories and all Med-shot and
Few-shot metrics.

We would like to note that we found self-conflict perfor-
mance in the original ConR [10] paper, where they report
overall MAE of 7.20 in main result (Table 1) and 7.48 in the
ablation studies (Table 6). The results in Table 6 are closed
to our reported result.

8.8. Experiment on IMDB-WIKI-DIR

Training Details: In Table 19, our primary results on IMDB-
WIKI-DIR encompass the replication of all baseline models
on an identical server configuration (RTX 3090), adhering to
the original codebases and training receipes. We observe a
performance drop of ConR [10] in comparison to the results
reported in their respective studies. To ensure a fair comparison,
we present the mean and standard deviation (in parentheses)
of the performances for SRL (ours) and ConR, based on three
independent runs. We found SRL superiors performance in
most categories and all Med-shot and Few-shot metrics.

We would like to note that we found self-conflict perfor-

mance in the original ConR [10] paper, where they report
overall MAE of 7.33 in the main result (Table 2) and 7.84 in
the ablation studies (Table 8), The results in Table 8 are close
to our reported result.

8.9. Complete result on STS-B-DIR (Table 20)

8.10. Complete result on Operator Learning (
Table 21)

9. Pseudo Code (Algorithm 1) for Surrogate-
driven Representation Learning (SRL)

10. Broader impacts
We introduce novel geometric constraints to the representation
learning of imbalanced regression, which we believe will
significantly benefit regression tasks across various real-world
applications. Currently, we are not aware of any potential
negative societal impacts.

11. Limitation and Future Direction
In considering the limitations and future directions of our
research, it’s important to acknowledge that our current method-
ology has not delved into optimizing the feature distribution in
scenarios involving regression with higher-dimensional labels.
This presents a notable area for future exploration. Additionally,
investigating methods to effectively handle complex label
structures in imbalanced regression scenarios could significantly
enhance the applicability and robustness of our proposed
techniques.



Table 18. Complete Results on AgeDB-DIR

Metrics Shot VANILLA LDS + FDS RankSim BalancedMSE Ordinal Entropy ConR SRL (ours)

MAE↓

All 7.67 7.55 7.41(0.03) 7.98 7.60 7.41(0.02) 7.22(0.02)
Many 6.66 7.03 6.49(0.01) 7.58 6.69 6.51(0.02) 6.64(0.01)
Med 9.30 8.46 8.73(0.05) 8.65 8.87 8.81(0.03) 8.28(0.04)
Few 12.61 10.52 12.47(0.09) 9.93 12.68 12.04(0.04) 9.81(0.05)

GM↓

All 4.85 4.86 4.71(0.03) 5.01 4.91 4.70(0.02) 4.50(0.02)
Many 4.17 4.57 4.15(0.02) 4.83 4.28 4.13(0.02) 4.12(0.02)
Med 6.51 5.38 5.74(0.04) 5.46 6.20 5.91(0.06) 5.37(0.02)
Few 8.98 6.75 8.92(0.08) 6.30 9.29 8.59(0.0) 6.29(0.04)

MSE↓

All 100.01 97.05 94.37(0.10) 107.35 97.28 92.57(0.06) 91.71(0.02)
Many 76.67 82.68 72.00(0.09) 95.49 74.79 72.06(0.04) 77.23(0.05)
Med 130.21 114.00 121.38(2.15) 125.55 122.07 121.24(1.88) 115.65(1.42)
Few 237.00 185.98 230.97(3.22) 169.00 241.13 207.00(3.09) 162.22(2.08)

Table 19. Complete Results on IMDB-WIKI-DIR

Metrics Shot VANILLA LDS + FDS RankSim BalancedMSE Ordinal Entropy ConR SRL (ours)

MAE↓

All 8.03 7.73 7.72 8.43 8.01 7.84(0.04) 7.69(0.02)
Many 7.16 7.22 6.92 7.84 7.17 7.15(0.03) 7.08(0.01)
Med 15.48 12.98 14.52 13.35 15.15 14.36(0.04) 12.65(0.04)
Few 26.11 23.71 25.89 23.27 26.48 25.15(0.06) 22.78(0.06)

GM↓

All 4.54 4.40 4.29 4.93 4.47 4.43(0.04) 4.28(0.02)
Many 4.14 4.17 3.92 4.68 4.07 4.05(0.03) 4.03(0.02)
Med 10.84 7.87 9.72 7.90 10.56 9.91(0.05) 7.28(0.03)
Few 18.64 15.77 18.02 15.51 21.11 18.55(0.06) 15.25(0.05)

MSE↓

All 136.04 130.56 130.95 146.19 137.50 132.41(1.22) 129.97(0.93)
Many 105.72 106.93 102.06 121.64 107.62 105.29(0.88) 105.83(0.77)
Med 373.07 315.92 351.22 343.12 369.88 338.30(1.99) 311.17(1.25)
Few 978.00 861.15 977.82 787.71 976.56 934.12(3.03) 859.81(2.28)

Table 20. Complete Results on STS-B-DIR

Metrics Shot VANILLA LDS + FDS RankSim BalancedMSE Ordinal Entropy SRL (ours)

MSE ↓

All 0.993 0.900 0.889 0.909 0.943 0.877
Many 0.963 0.911 0.907 0.894 0.902 0.886
Med 1.000 0.881 0.874 1.004 1.161 0.873
Few 1.075 0.905 0.757 0.809 0.812 0.745

Pearson correlation ↑

All 0.742 0.757 0.763 0.757 0.750 0.765
Many 0.685 0.698 0.708 0.703 0.702 0.708
Med 0.693 0.723 0.692 0.685 0.679 0.749
Few 0.793 0.806 0.842 0.831 0.767 0.844

MAE ↓

All 0.804 0.768 0.765 0.776 0.782 0.750
Many 0.788 0.772 0.772 0.763 0.756 0.748
Med 0.865 0.785 0.779 0.839 0.900 0.773
Few 0.837 0.712 0.699 0.749 0.762 0.694

Spearman correlation ↑

All 0.740 0.760 0.767 0.762 0.755 0.769
Many 0.650 0.670 0.685 0.677 0.669 0.689
Med 0.495 0.488 0.495 0.487 0.448 0.503
Few 0.843 0.819 0.862 0.867 0.845 0.879



Table 21. Complete results on OL-DIR with standard deviation added, best results are bold.

Operation MAE(10−3) ↓ MSE (10−4) ↓

Shot All Many Med Few All Many Med Few

Linear

VANILLA 15.64(2.72) 11.86(2.20) 15.45(3.55) 27.00(5.62) 5.40(1.10) 2.81(0.75) 4.40(1.23) 14.20(2.25)
Ordinal Entropy 10.07(1.22) 9.26(0.98) 9.85(1.45) 13.01(1.92) 2.00(0.32) 1.53(0.19) 1.89(0.73) 3.42(0.82)
SRL (ours) 9.18(0.92) 8.32(0.66) 9.47(1.13) 9.33(1.89) 1.98(0.37) 0.98(0.21) 1.72(0.62) 2.67(0.99)

Nonlinear

VANILLA 11.64(1.87) 9.89(1.25) 11.02(2.23) 19.77(2.89) 9.20(1.23) 4.33(0.88) 7.53(1.55) 24.70(1.99)
Ordinal Entropy 12.91(1.25) 9.93(0.93) 13.07(1.57) 21.02(1.89) 13.80(2.98) 8.82(2.25) 11.84(3.59) 30.12(5.40)
SRL (ours) 11.25(1.13) 9.48(0.75) 9.22(1.45) 17.00(1.54) 8.60(1.04) 7.42(0.70) 6.41(1.15) 14.12(1.39)

Algorithm 1 Pseudo Code for Surrogate-driven Representation Learning (SRL)

Require: Training set D={(xi,yi)}Ni=1, encoder f , regression function g, total training epochs E, momentum α, a set of uniformly
distributed points U , surrogate S, batch size M .

1: for e=0 to E do
2: repeat
3: Sample a mini-batch {(xm,ym)}Mm=1 from D
4: {zm}Mm=1=f({xm}Mm=1)
5: if e=0 then
6: Update the model with loss L=Lreg({ym}Mm=1,g({zm}Mm=1))
7: else
8: get C from {zm}Mm=1 using Equation (8)
9: get Se′ from C and Se using Equation (9)

10: Update the model with loss L=Lreg({ym}Mm=1,g({zm}mm=1))+LG(Se′,U)+Lcon(Se′,{zm}Mm=1)
11: end if
12: until iterate over all training samples at current epoch e
13: // Update the surrogate
14: get Ŝeby calculate the class center for the current epoch
15: if e=0 then
16: S1=Ŝe

17: else
18: Se+1=αSe+(1−α)Ŝe # Momentum update the surrogate, Equation (9)
19: end if
20: end for
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