
Supplementary Material
This appendix provides additional content that cannot be
included in the main paper due to page limitations.

A. Training Details
Similar to DUSt3R [111], we randomly sample a fixed num-
ber of 50K image pairs from each dataset at each training
epoch. During training, we augment the image pairs with
random color jittering. For Reloc3r-512, we begin training
directly with images at the maximum resolution of 512 pix-
els. Within each batch, the image aspect ratios are randomly
selected from [4:3, 32:21, 16:9, 2:1, 16:5]. During infer-
ence, test image pairs are resized to a width of 512 pixels
while maintaining their original aspect ratios. In contrast,
for Reloc3r-224, the image resolution is fixed to 224×224
for both training and inference.

Our symmetric architecture consists of a ViT-Large as
the encoder [32], a ViT-Base as the decoder, and a regres-
sion head. We freeze the ViT encoder and only update the
weighs for the decoder and pose regression head during the
training. Unlike DUSt3R, which uses both image orders
(I1, I2) and (I2, I1) during training for better generaliza-
tion, our symmetric design allows us to feed only (I1, I2)
directly. This approach speeds up the training process and
reduces memory and storage consumption, which will be
discussed in detail in Sec. B.

B. Detailed Ablation Studies
Symmetric vs. asymmetric networks. DUSt3R [111]’s
two branches are designed to learn different capabilities.
They aim to solve scene reconstruction in a unified coordi-
nate system. For convenience, they choose the first frame’s
local coordinate system as the unified system. Therefore,
the first branch focuses on 3D geometry reconstruction
without requiring coordinate transformations, while the sec-
ond branch handles both geometry reconstruction and co-
ordinate system alignment. In contrast, Reloc3r focuses
on learning relative poses, which are inherently symmetric
for the two branches. To leverage this property, we adapt
DUSt3R’s architecture by introducing shared decoder and
prediction head, simplifying the model while preserving its
effectiveness.

The asymmetric version of Reloc3r follows DUSt3R’s
design [111], which employs separate decoders and regres-
sion heads for the two input images. However, this ap-
proach increases the number of learnable parameters and
introduces a potential bias based on the image order. To
mitigate this bias, DUSt3R incorporates flipped image pairs
during training, which adds additional computational over-
head. As shown in Table 6 in the main paper, we demon-
strate that the asymmetric version performs even worse than
the default Reloc3r on the ScanNet1500 dataset [26, 80].

This underscores the benefits of our fully symmetric ar-
chitecture, where both branches share decoder and predic-
tion head. Remarkably, our model (with 0.43B parameters)
achieves superior accuracy while using approximately 28%
fewer parameters compared to the asymmetric variant.
Learning relative poses with metric scales? As discussed
in the main paper, learning metric scales in relative poses
can divert the network’s focus from estimating camera ori-
entation and movement direction, potentially hindering gen-
eralization across datasets. To investigate this, we con-
duct an ablation study on learning relative poses with met-
ric scales. Following recent works [4, 116], we normalize
the translation output as a unit vector and add an additional
layer to regress the metric translation scale. The predicted
translation vectors and scales are supervised with the L1
loss. We evaluate this version on ScanNet1500 [26, 80] and
Cambridge Landmarks [44]. The relative pose estimation
results are reported in Table 6. Notably, in this setup, the
predicted scale factors are irrelevant to the task and we ob-
serve a decrease in the accuracy of relative pose estimation
compared to our default Reloc3r. These findings validate
the effectiveness of the non-metric design, which allows the
network to focus on two critical aspects: camera orientation
and movement direction.

The results of absolute pose estimation are presented in
Table 9. Methods labeled as metric represent the versions
that learn metric camera poses. We observe that the pre-
dicted scale estimates lack accuracy, leading to translation
errors similar to baseline methods [4, 116]. For further eval-
uation, we focus solely on translation directions combined
with top-2 motion averaging, which produces significantly
improved results. This finding validates our approach of es-
timating metric scales through motion averaging rather than
directly learning them with neural networks, highlighting its
robustness and effectiveness.
Rotation representations. We use a continuous 9D-to-
SO(3) mapping [52] in Reloc3r to avoid the discontinuities
found in 3D and 4D representations. In Table 7, we reports
an ablation study using different rotation representations.
The experiments are trained on ScanNet++ [123] and tested
on ScanNet1500 [26, 80]. The results demonstrate the ef-
fectiveness of the 9D rotation representation.

Rot. representations 3D 4D 9D (default)

AUC@20 66.81 67.87 68.70

Table 7. Ablation study for different rotation representations.

Study on the importance of network weight initializa-
tion. The proposed Reloc3r builds on the recent foundation
model DUSt3R [111], leveraging its pre-trained weights for
initialization. Here, we explore different approaches for
network weights initialization: using pre-trained weights



Methods
ScanNet1500

AUC@5 AUC@10 AUC@20

No init. (224) 3.74 14.59 34.04
No init. (512) 3.98 15.58 37.02
No init. (224 to 512) 6.76 21.96 44.38

DUSt3R-512 (encoder) 17.83 41.08 63.05
CroCo v2 (full) 22.44 47.62 68.65
MASt3R (full) 32.62 56.28 74.32
DUSt3R-512 (full) 34.79 58.37 75.56

Table 8. Ablations on different network weight initializations.

from other models, and random initialization.
Table 8 presents the test results for these initialization

methods. Training from MASt3R [51] and CroCo [114] re-
sults in worse pose accuracy. Similarly, when only initializ-
ing the encoder part from DUSt3R and training the decoder
from scratch, the performance also degrades. Without pre-
trained weights as initialization, we observe a significant
drop in performance, a phenomenon similarly observed in
DUSt3R trained without CroCo initialization. Interestingly,
even in the random initialized version, we still can observe
meaningful interactions in the cross-attention layers. These
layers demonstrate functionality akin to feature matching,
despite the absence of ground-truth correspondences for su-
pervision. Additional analysis of this behavior is provided
in the following Sec. C.

C. More Analyses

Figure 5. Our pose regression network encounters failure cases
when significant changes in focal length occur. As shown in the
figure, there are 3× to 4× zoom in / out effects. While rotation es-
timates remain largely unaffected, translation becomes noticeably
inaccurate. This issue is similar to the scale-distance ambiguity
problem in two-view geometry.

Visualization of cross-attention responses. We are inter-
ested in how Reloc3r achieves its performance and aim to
understand what the network has learned. To this end, we
visualize the cross-attention maps in the decoder blocks and
observe an interesting behavior: they resemble patch-wise
correspondence matching. Results from two datasets are
presented in Figure 6 and Figure 7. For clarity, the query
patches in the right-hand figures are manually selected for

Figure 6. Visualization of top-3 cross-attention responses on the
ScanNet1500 dataset [26, 80]. The top row displays results from
Reloc3r trained without pretraining, while the bottom row shows
the default Reloc3r trained with DUSt3R initialization.

Figure 7. Visualization of top-3 cross-attention responses on the
Cambridge Landmarks [44]. The top row displays results from
Reloc3r trained without pretraining, while the bottom row shows
the default Reloc3r trained with DUSt3R initialization.

better visualization.
From random initialization, the network still gains the

ability to build correspondences, with only relative poses as
supervision. When initialized with DUSt3R’s pre-trained
weights, the cross-attention responses are more accurate
and concentrated. This may stem from dense pixel-wise co-
ordinate supervision. We believe introducing ground-truth
correspondence information and supervising the across-
attention maps could potentially enhance network perfor-
mance, or accelerate convergence during training.
Model sizes. Previous works mainly focus on algorithm
design, yet we take a different direction by scaling up the



Methods GreatCourt KingsCollege OldHospital ShopFacade StMarysChurch Average (4) Average Inference time
FM

HLoc (SP+SG) [27, 79, 80] 0.10 / 0.05 0.07 / 0.10 0.13 / 0.23 0.03 / 0.14 0.04 / 0.16 0.07 / 0.16 0.07 / 0.14 737 ms
LazyLoc [31] (top-20) 0.14 / 0.08 0.07 / 0.13 0.20 / 0.37 0.04 / 0.15 0.06 / 0.18 0.09 / 0.21 0.10 / 0.18 1041 ms
DUSt3R-512 [111] (top-20) 0.38 / 0.16 0.11 / 0.20 0.17 / 0.33 0.06 / 0.26 0.07 / 0.24 0.10 / 0.26 0.16 / 0.24 >3000 ms

SC
R DSAC* (RGB+3D) [14] 0.49 / 0.3 0.15 / 0.3 0.21 / 0.4 0.05 / 0.3 0.13 / 0.4 0.14 / 0.4 0.21 / 0.3 -

DSAC* (RGB) [14] 0.34 / 0.2 0.18 / 0.3 0.21 / 0.4 0.05 / 0.3 0.15 / 0.6 0.15 / 0.4 0.19 / 0.4 -
ACE [16] 0.43 / 0.2 0.28 / 0.4 0.31 / 0.6 0.05 / 0.3 0.18 / 0.6 0.21 / 0.5 0.25 / 0.4 -

R
PR

Map-free (Regress) [4] 8.40 / 4.56 2.44 / 2.54 3.73 / 5.23 0.97 / 3.17 2.91 / 5.10 2.51 / 4.01 3.69 / 4.12 11 ms
ExReNet (SUNCG) [116] 9.79 / 4.46 2.33 / 2.48 3.54 / 3.49 0.72 / 2.41 2.30 / 3.72 2.22 / 3.03 3.74 / 3.31 18 ms
ImageNet+NCM [129]† - - - - - 0.83 / 1.36 - -
Reloc3r-224 top-10 1.71 / 0.94 0.47 / 0.41 0.87 / 0.66 0.18 / 0.53 0.41 / 0.73 0.48 / 0.58 0.73 / 0.65 51 ms
Reloc3r-512 metric 9.18 / 1.20 2.77 / 0.60 3.79 / 0.96 0.95 / 0.92 2.98 / 0.99 2.62 / 0.87 3.93 / 0.93 42 ms
Reloc3r-512 metric top-2 2.86 / 1.18 0.95 / 0.53 1.41 / 0.86 0.37 / 0.79 0.63 / 0.91 0.84 / 0.77 1.24 / 0.85 54 ms
Reloc3r-512 top-2 2.41 / 0.86 0.75 / 0.41 1.22 / 0.48 0.18 / 0.55 0.60 / 0.65 0.69 / 0.52 1.03 / 0.59 54 ms
Reloc3r-512 top-5 1.26 / 0.72 0.49 / 0.39 0.77 / 0.54 0.13 / 0.55 0.40 / 0.60 0.45 / 0.52 0.61 / 0.56 122 ms
Reloc3r-512 top-10 1.22 / 0.73 0.42 / 0.36 0.62 / 0.55 0.13 / 0.58 0.34 / 0.58 0.38 / 0.52 0.55 / 0.56 235 ms
Reloc3r-512 top-10 robust 0.95 / 0.72 0.45 / 0.36 0.58 / 0.53 0.13 / 0.53 0.34 / 0.54 0.38 / 0.49 0.49 / 0.54 235 ms

Table 9. Additional results on the Cambridge Landmarks [44]. Note that although DUSt3R-512 regresses coordinates, it performs pixel-
to-pixel matching with these regressed coordinates for accurate visual localization. The inference times of Reloc3r are reported using fp32.

training to develop (to the best of our knowledge) the first
foundation model for camera pose regression. As a result,
Reloc3r’s relative pose regression network contains 0.43B
parameters - far larger than existing camera pose regres-
sion networks (e.g., Map-free with 22M and Marepo with
10M parameters). Despite its size, it achieves real-time in-
ference on consumer-grade GPUs like NVIDIA 3090/4090.
We chose Transformer architectures as our backbone for
their proven ability to scale better than Convolutional Neu-
ral Networks (CNNs). Our experiments with Map-free (Re-
sUNet) showed that its 22M parameters led to underfitting
on our training data. Even after expanding the CNN’s Res-
blocks and feature dimensions (up to 0.1B parameters), the
model only memorized the training data. All CNN models
we tested performed poorly, achieving AUC@20 <5 on the
ScanNet1500 datasetet. While their rotation accuracy can
be reasonable, their translation accuracy is poor.
Scale and diversity of training data. In Table 10, we
show that larger training sets consistently improve pose es-
timation accuracy. Removing domain-specific data (such
as the object-centric Co3Dv2 dataset) has minimal impact
on accuracy in other domains. This suggests that diverse
data helps with generalization, while domain-specific data
improves accuracy within its domain.

AUC@20 on datasets ScanNet1500 RE10K ACID

Reloc3r-512 trained w/ ScanNet++ only 68.70 58.52 51.15
Reloc3r-512 trained w/o RE10K & Co3Dv2 75.46 84.44 67.41
Reloc3r-512 trained w/o RE10K 75.55 85.33 67.76
Reloc3r-512 full training 75.56 88.39 70.34

Table 10. Ablation study on training data.

Additional discussion on limitations and future works.
As discussed in the main paper, a primary limitation of Re-
loc3r is the degeneracy issue of solving the metric trans-

lation with motion averaging when all the images are per-
fectly collinear. In such cases, the metric scale becomes un-
solvable. Although our experiments show that directly re-
gressing metric poses leads to inferior results, this remains
an open direction for future research to explore.

While classical feature-matching methods solve relative
poses using the 5-point algorithm [38] with ground-truth
camera intrinsics, our pose regression network does not ex-
plore this intrinsic information. This limitation results in
some failure cases similar to the scale-distance ambiguity
issue (Figure 5), making it challenging to predict the move-
ment of the camera center. Future research could explore
embedding intrinsic parameters directly into the network or
regressing the essential matrix as a potential solution.

D. Additional Comparisons

Relative pose estimation on MegaDepth1500 [56, 95].
The results are presented in Table 11. This dataset exhibits
significant intrinsic variations between image pairs, which
pose a major challenge for pose regression methods and of-
ten lead to failures in estimating the translation direction.
We also compare our method with matching-based competi-
tors, where DUSt3R [111] and MASt3R [51] are evaluated
with image resolution 512 × 512, and the relative poses are
obtained from essential matrix estimation in OpenCV [17].
While our method achieves reasonable pose accuracy, it still
falls short compared to SoTA matching-based approaches.
Figure 5 illustrates some failure cases, which are also dis-
cussed in Sec. C.
Comparison with FAR [77]. Recent works FAR [77] and
PanoPose [100] design pose regression networks for wide
baseline pairs and panorama images. While FAR performs
well on images with few overlaps, it underperforms Reloc3r
on popular datasets used in the main paper. Specifically, we



Figure 8. We visualize relative pose estimates using both internet-sourced and self-captured images. For better visualization, we plot the
axes of the first view, and the metric scale of the translation vectors is set to 1 meter.

Figure 9. We visualize absolute pose estimates using casually captured videos. For each video, we use two database images whose poses
are estimated by our pose regression network. The metric scale of the translation between database images is set to 1 meter.

tested FAR on ScanNet1500, RE10K, and ACID datasets,
achieving AUC@20 of 28.19, 37.67, and 44.98%, respec-
tively. Since PanoPose has not released its code yet, we
look forward to comparing with it in the future.
Visual localization with different experimental settings.
We conduct these experiments on the Cambridge Land-
marks [44]. The results are shown in Table 9.

In our evaluation of metric pose estimation, we compare
results with and without motion averaging. Due to the chal-
lenge of learning metric scales, using top-2 motion aver-
aging yields significantly better results compared to single

pairs. For Reloc3r-512, we test varying numbers of top-K
image pairs. While increasing the number of images re-
duces error, it also leads to longer inference times. We also
try to adopt LazyLoc [31]’s rotation and translation aver-
aging modules as robust estimators. These provide limited
improvements across most scenes, with the notable excep-
tion of GreatCourt, which features extensive repetitive pat-
terns and similar regions. Since Reloc3r does not produce
matches, it cannot adopt the post-optimization step used in
LazyLoc. Like other pose regression-based methods, Re-
loc3r therefore still underperforms in pose accuracy com-



Methods
MegaDepth1500

AUC@5 AUC@10 AUC@20

N
on

-P
R

Efficient LoFTR [112] 56.4 72.2 83.5
ROMA [34] 62.6 76.7 86.3
DUSt3R [111] 27.9 46.0 63.3
MASt3R [51] 42.4 61.5 76.9

PR

Map-free (Regress-SN) [4] - - <10
Map-free (Regress-MF) [4] - - <10
ExReNet (SN) [116] - - <10
ExReNet (SUNCG) [116] - - <10
Reloc3r-224 39.9 59.7 75.4
Reloc3r-512 49.6 67.9 81.2

Table 11. Relative camera pose evaluation on the MegaDepth1500
dataset [56, 95].

pared to SoTA feature matching-based methods on large-
scale scenes. The accuracy of pose regression also can
not match with those of scene coordinate regression (SCR)
based methods, as SCR methods typically require per-scene
training and can take long inference times.

E. Details for the Compared Methods
For relative pose estimation on ScanNet1500 [26, 80],
Re10K [130], and ACID [62]. In NoPoSplat’s imple-
mentation, images are first resized and center-cropped to
256×256, then upscaled to 560×560 at the coarse level,
and finally to 864×864 to match ROMA [34]’s settings.
Our approach, however, maintains original aspect ratios
while limiting maximum image resolution to 512px. For
DUSt3R [111] and MASt3R [51], different from NoPoS-
plat that uses the input resolution of 512×256, we set it to
512×512. On MegaDepth1500 [56, 95], evaluation resolu-
tions also vary across methods, following their original set-
tings. For example, Efficient LoFTR [112] is evaluated with
an image resolution of 1200×1200, RoMA uses 560×560,
while our method employs a resolution of 512px. For the
PR-based competitors, We report the pose regression ver-
sions of Map-free [4] trained on ScanNet [26] and their
Map-free dataset. Similarly, we evaluate two versions of
ExReNet trained on ScanNet and SUNCG [93].

For multi-view pose estimation on CO3Dv2 [75], we
randomly sample 10 images from each test sequence to
form 45 pairs, yielding 76,905 total pairs for evaluation.
For RayReg [128] and RayDiffusion [128], we report the
results based on the 8-view setup described in the paper, as
we could not produce reasonable results with 10 views.

For absolute metric pose estimation on 7 Scenes [91] and
Cambridge [44], the results mainly come from the original
publication of each paper, except Map-free and ExReNet.
We evaluate two versions of Map-free: regression and hy-
brid with matching. For 7 Scenes, we use checkpoints
trained on ScanNet, while for the Cambridge dataset, we
use checkpoints trained on the Map-free dataset to main-

tain consistency between indoor and outdoor settings. For
ExReNet, we also evaluate their two versions on both 7
Scenes and Cambridge datasets.

For the remaining methods not covered above, we cite
results directly from their original publications.

F. In-The-Wild Camera Pose Estimations
We test Reloc3r with “in-the-wild” images and videos col-
lected from the internet and captured by ourselves.

The results for relative pose estimation are shown in Fig-
ure 8. Thanks to large-scale training, we find that Reloc3r
generalizes well across diverse viewpoint changes and can
infer relative poses between paintings, sketches, and real
images. Surprisingly, it achieves reasonable results even
when processing the faces of different people.

The results for visual localization are shown in Figure 9.
For each video, we use two images as a database to local-
ize query images in the video. The database poses are esti-
mated by our pose regression network. Note that when the
database and query images are collinear, the metric scale
cannot be reliably recovered due to the degeneracy issue.
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