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Supplementary Material

A. Comparison with GAN-based Methods
We compared our method with GAN-based approaches in
Tab. 5. While the GAN methods show advantages in full-
reference metrics such as PSNR and SSIM, our model out-
performs GAN-based methods on all no-reference metrics.
Some researchers have found the limitations of PSNR and
SSIM in the field of image super-resolution [9, 10]. The
effectiveness of PSNR and SSIM in assessing image fi-
delity in complex degradation scenarios remains debatable,
as pixel-level misalignment often arises when restoring
severely degraded images. However, no-reference metrics
assess image quality based on the individual image, with-
out the need to forcibly align with the ground truth. There-
fore, in more complex and realistic degradation scenarios,
no-reference metrics may be more suitable for evaluating
the results of image super-resolution. In Appendix C, we
further discuss the comparison between full-reference met-
rics and human preferences, and in the Fig. 9, we present
a visual comparison with GAN-based methods. From the
visualization, it can be observed that our model achieves
better results in terms of texture details compared to GAN
methods.

B. More Visual Comparisons
In Figs. 10 to 12, we provide more visual caparisons
with other diffusion-based methods. Numerous examples
demonstrate the robust restoration capabilities of TSD-SR

and the high quality of the restored images.

C. Comparisons of Full-reference Metrics and
Human Preference

We present additional comparative experiments in Figure 13
to demonstrate that PSNR and SSIM may have limitations
in assessing image fidelity under complex degradation sce-
narios. It can be observed that GAN-based methods with
higher PSNR and SSIM produce over-smooth or broken
textures, raising concerns about their realism and fidelity.
While our approach trades off PSNR and SSIM for nat-
ural detail restoration, it achieves enhanced realism and
broader perceptual acceptance (Our additional user study
reveals that 90.28% of participants prefer ours instead of
high PSNR and SSIM methods.). This phenomenon has
also been widely discussed in other related research works
[1, 3, 7, 9, 10, 12, 13]. LPIPS [12] is proposed to over-
come the limitation that PSNR and SSIM fail to align with
human judgments in spatial ambiguities situation. Other
DMs-based SR researchers [7, 10] argue that DMs intro-
duce superior pre-trained priors, enabling the restoration of
information that traditional methods (from scratch) cannot
achieve. However, such capability often leads to a decline
in pixel-level metrics, as they prioritize distribution mod-
eling and sampling from learned distributions over strict
pixel fidelity. We anticipate the development of better full-
reference metrics in the future to assess advanced Real-ISR

Table 5. Quantitative comparison with GAN-based methods on both synthetic and real-world benchmarks. The best results of each metric
are highlighted in red.

Datasets Method PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ FID ↓ NIQE ↓ MUSIQ ↑ MANIQA ↑ CLIPIQA ↑
BSRGAN 28.70 0.8028 0.2858 0.2143 155.61 6.5408 57.15 0.4847 0.5091

Real-ESRGAN 28.61 0.8051 0.2818 0.2088 147.66 6.7001 54.27 0.4888 0.4521
LDL 28.20 0.8124 0.2791 0.2127 155.51 7.1448 53.94 0.4894 0.4476

FeMASR 26.87 0.7569 0.3156 0.2238 157.72 5.9067 53.70 0.4413 0.5633
DRealSR

Ours 27.77 0.7559 0.2967 0.2136 134.98 5.9131 66.62 0.5874 0.7344

BSRGAN 26.38 0.7651 0.2656 0.2123 141.24 5.6431 63.28 0.5425 0.5114
Real-ESRGAN 26.65 0.7603 0.2726 0.2065 136.29 5.8471 60.45 0.5507 0.4518

LDL 25.28 0.7565 0.2750 0.2119 142.74 5.9880 60.92 0.5494 0.4559
FeMASR 25.06 0.7356 0.2936 0.2285 141.01 5.7696 59.05 0.4872 0.5405

RealSR

Ours 24.81 0.7172 0.2743 0.2104 114.45 5.1298 71.19 0.6347 0.7160

BSRGAN 24.58 0.6269 0.3502 0.2280 49.55 4.7501 61.68 0.4979 0.5386
Real-ESRGAN 24.02 0.6387 0.3150 0.2123 38.87 4.8271 60.38 0.5401 0.5251

LDL 23.83 0.6344 0.3256 0.2227 42.28 4.8555 60.04 0.5328 0.5180
FeMASR 22.45 0.5858 0.3370 0.2205 41.97 4.8679 57.94 0.4787 0.5769

DIV2K-Val

Ours 23.02 0.5808 0.2673 0.1821 29.16 4.3244 71.69 0.6192 0.7416
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Figure 9. Qualitative comparisons between TSD-SR and GAN-based Real-ISR methods. Please zoom in for a better view.



Table 6. Same base model for fairer comparison.
Model Base Model LPIPS↓ DISTS↓ NIQE↓ MUSIQ↑ CLIPIQA↑
AddSR SD2-base 0.3196 0.2242 6.9321 60.85 0.6188

Ours SD2-base 0.3040 0.2234 6.2202 65.14 0.6935
OSEDiff SD2.1-base 0.2968 0.2162 6.4471 64.69 0.6958

Ours SD2.1-base 0.2943 0.2115 5.7934 65.41 0.7109

methods.

D. More Ablation Studies
Base model. To validate the effectiveness of our method
across different versions of SD models, we conduct ad-
ditional experiments, as shown in Tab. 6, including SD2-
base and SD2.1-base models. The performance is evalu-
ated on the DRealSR test dataset [8]. It demonstrates su-
perior performance compared to other one-step SR meth-
ods, including OSEDiff and AddSR. Specifically, our SD2-
base version model outperforms the single-step AddSR
across all perceptual reference metrics and no-reference
metrics, particularly excelling in NIQE[11], MUSIQ[2],
and CLIPIQA[6], significantly surpassing the performance
of the AddSR. Our SD2.1-base model demonstrates compa-
rable performance to OSEDiff and surpasses it across vari-
ous metrics, with notable improvements in NIQE and CLIP-
IQA.
Parameters N and s. We provide performance compar-
isons for different combinations of N and s in Tab. 7. The
performance is evaluated on the DRealSR test dataset. N
is set to 4, and s is set to 50 in our setting (bold in the ta-
ble). Larger or smaller N will degrade performance, possi-
bly because it is related to regularization strength. We pre-
fer to use a smaller N because DASM is computationally
time-consuming. Therefore, after carefully balancing train-
ing duration and model performance, we selected N=4 as
the final value. Small s will have similar performance, but
the image quality will be compromised when setting large
s. Our experimental results indicate that selecting s within

Table 7. Ablation studies for hyperparameter N and s.
N s LPIPS↓ DISTS ↓ FID ↓ MUSIQ ↑ MANIQA ↑ CLIPIQA ↑
2 50 0.3104 0.2327 137.64 64.49 0.5717 0.7118
4 50 0.2967 0.2136 134.98 66.62 0.5874 0.7344
8 50 0.3421 0.2633 151.64 65.73 0.5875 0.7227
4 25 0.3063 0.2201 130.74 66.19 0.5828 0.7269
4 100 0.3176 0.2230 135.54 65.23 0.5782 0.7024

the range of 25-75 may yield better performance.

E. Theory of Target Score Matching

The core idea of Target Score Matching (TSM) is that for
samples drawn from the same distribution, the real scores
predicted by the Teacher Model should be close to each
other. Thus we minimize the MSE loss between the Teacher
Model’s predictions of ẑt and zt by

LMSE(ẑ, z, cy)

= Et,ϵ
[
w(t)∥ϵψ(ẑt; t, cy)− ϵψ(zt; t, cy)∥22

] (10)

where the expectation of the gradient is computed across all
diffusion timesteps t ∈ {1, · · · , T} and ϵ ∼ N (0, I).

To understand the difficulties of this approach, consider
the gradient of

∇θLMSE(ẑ, z, cy) = Et,ϵ
[
w(t) · ∂ϵψ(ẑt; t, cy)

∂ẑt︸ ︷︷ ︸
Diffusion Jacobian

(ϵψ(ẑt; t, cy)− ϵψ(zt; t, cy))︸ ︷︷ ︸
Prediction Residual

∂ẑ

∂θ︸︷︷︸
Generator Jacobian

] (11)

where we absorb ∂ẑt

∂ẑ and the other constant into w(t). The
computation of the Diffusion Jacobian term is computation-
ally demanding, as it necessitates backpropagation through
the Teacher Model. DreamFusion [4] found that this term
struggles with small noise levels due to its training to ap-
proximate the scaled Hessian of marginal density. This
work also demonstrated that omitting the Diffusion Jaco-
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Figure 10. Qualitative comparisons between TSD-SR and different diffusion-based methods. Our method can effectively restore the texture
and details of the corresponding object under challenging degradation conditions. Please zoom in for a better view.
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Figure 11. Qualitative comparisons between TSD-SR and different diffusion-based methods. Our method can effectively restore the texture
and details of the corresponding object under challenging degradation conditions. Please zoom in for a better view.
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Figure 12. Qualitative comparisons between TSD-SR and different diffusion-based methods. Our method can effectively restore the texture
and details of the corresponding object under challenging degradation conditions. Please zoom in for a better view.
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Figure 13. Comparisons between full-reference metric (PSNR/SSIM) assessments and human visual preference. Despite scoring lower on
full-reference metrics, TSD-SR generates images that align with human preference.

bian term leads to an effective gradient for optimizing. Sim-
ilar to their approach, we update Eq. (11) by omitting Dif-
fusion Jacobian:

∇θLTSM(ẑ, z, cy) =

Et,ϵ
[
w(t) (ϵψ(ẑt; cy, t)− ϵψ(zt; cy, t))︸ ︷︷ ︸

Prediction Residual

∂ẑ

∂θ︸︷︷︸
Generator Jacobian

]
(12)

The effectiveness of the method can be proven by start-

ing from the KL divergence. We can use a Sticking-the-
Landing [5] style gradient by thinking of ϵψ(zt; cy, t) as a
control variate for ϵ̂ . For detailed proof, refer to Appendix
4 of DreamFusion [4]. It demonstrates that the gradient of
this loss yields the same updates as optimizing the training
loss LMSE Eq. (10), excluding the Diffusion Jacobian term.

Compared with the VSD loss, we find that the term “Pre-
diction Residual” has changed, and the two losses are sim-
ilar in the gradient update mode. Specifically, we find that
VSD employs identical inputs for both the Teacher and



Algorithm 1: TSD-SR Training Procedure
Input: D = {xL, xH , cy} , pre-trained Teacher Diffusion Model including VAE encoder Eψ , denoising network ϵψ

and VAE decoder Dψ , the number of iterations N and step size s of DASM.
Output: Trained one-step Student Model Gθ.

1 Initialize Student Model Gθ, including Eθ ← Eψ with trainable LoRA, ϵθ ← ϵψ with trainable LoRA, Dθ ← Dψ .
2 Initialize LoRA diffusion network ϵϕ ← ϵψ with trainable LoRA.
3 while train do
4 Sample (xL, xH , cy) ∼ D

/* Network forward */
5 ẑ ← ϵθ(Eθ(xL)), z ← Eψ(xH)
6 x̂H ← Dψ(ẑ)

/* Compute reconstruction loss */
7 LRec ← LPIPS(x̂H , xH)

/* Compute regularization loss */
8 Sample ϵ from N (0, I), t from {50, · · · , 950}
9 σt ← FlowMatchingScheduler(t)

10 ẑt ← σtϵ+ (1− σt)ẑ, zt ← σtϵ+ (1− σt)z
11 LReg ← LTSD(ẑt, zt, cy)
12 for i← 1 to N do
13 cur ← t− i · s
14 pre← t− i · s+ s
15 σcur ← FlowMatchingScheduler(cur)
16 σpre ← FlowMatchingScheduler(pre)
17 ẑcur ← ẑpre + (σcur − σpre) · ϵϕ(ẑpre; pre, cy)
18 zcur ← zpre + (σcur − σpre) · ϵψ(zpre; pre, cy)
19 LReg += weight · LTSD(ẑcur, zcur, cy)
20 end
21 LG ← LRec + γLReg
22 Update θ with LG

/* Compute diffusion loss for LoRA Model */
23 Sample ϵ from N (0, I), t from {50, · · · , 950}
24 σt ← FlowMatchingScheduler(t)
25 ẑt ← σtϵ+ (1− σt)stopgrad(ẑ)
26 LLora ← LDiff (ẑt, cy)
27 Update ϕ with LLora
28 end

LoRA models to compute the gradient, while here TSM
uses high-quality and suboptimal inputs for the Teacher
Model. The losses are related to each other through
ϵϕ(ẑt; t, cy).

F. Algorithm
Algorithm 1 details our TSD-SR training procedure. We use
classifier-free guidance (cfg) for the Teacher Model and the
LoRA Model. The cfg weight is set to 7.5.
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