
A. Results on Additional Model Pairs
We conducted experiments on additional model pairs, sum-
marized in Table 9, which highlights the cumulative perfor-
mance gains across tasks for six different model pairs. The
model pairs include: (1) merging LLaVA-OneVision [12]
into Qwen2-VL [24] (Table 1), (2) merging LLaVA-v1.5
[14] into CogVLM [25] (Table 2), (3) merging mPLUG-
Owl2 into LLaVA-v1.5, (4) merging LLaVA-v1.5 into
mPLUG-Owl2 [28] (Table 11), (5) merging CogVLM into
mPLUG-Owl2 (Table 12) and (6) merging mPLUG-Owl2
into CogVLM (Table 13). The performance gain for each
task is computed as the difference between the performance
of our method (or baselines) and the average performance
of the two original models, with positive values indicating
an improvement. In Table 9, the SUM column presents the
total performance gains across all tasks, where AdaMMS
outperforms all baselines, achieving +91.92 performance
gain, and consistently ranks among the top two in perfor-
mance gains across all benchmarks. It is noteworthy that
on GQA [9] and VizWiz [7] benchmarks in Table 11 and
Table 12, all model merging methods experience a per-
formance drop. We attribute this decline to the signifi-
cant performance gap between the original models on these
benchmarks. In these scenarios, AdaMMS demonstrates the
smallest performance decrease among them. In Table 11,
Table 12 and Table 13, AdaMMS obtains the second best
result in the sum of all benchmarks, with a small gap com-
pared to the best baseline.

To investigate the effect of altering base models on per-
formances, we analyze experiments on merging the same
model pair with different base models. For the model pair
of mPLUG-OWl2 and CogVLM, results in Table 12 use
mPLUG-Owl2 as the base model, and results in Table 13
use CogVLM as the base model. On benchmarks where
the original models exhibit a significant performance gap,
such as OCRBench [15] and TextVQA [18], model merg-
ing methods, including AdaMMS, achieve only marginal
performance improvements. In contrast, on benchmarks
where the original models have comparable performance,
AdaMMS consistently enhances the base model’s perfor-
mance (with the exception of GQA [9] for the mPLUG-
Owl2 architecture), irrespective of the choice of base model.
Notably, even when merging a weaker model into a stronger
one for a specific task, AdaMMS can sometimes boost the
stronger model’s performance. For instance, this effect is
observed on SEEDBench [11], OKVQA [16], and GQA [9]
in Table 13. These results highlight that our model merging
technique can further optimize the performance of a strong
model, even when another model demonstrates weaker per-
formance on the same task.

Additionally, to demonstrate the effectiveness of our
method on larger models, we conducted experiments on
Cambrian and Yi-VL with 34B language model size. Ta-

ble 6 shows that AdaMMS also merges the abilities in
larger MLLMs effectively.

Model OCRBench MME

Cambrian(base) 58.70 72.50
Yi-VL 29.70 73.65
AVG 44.20 73.08
AdaMMS 59.20 74.07

Table 6. Results on merging Yi-VL into Cambrian.

B. Implementation Details of AdaMMS
The implementation details of AdaMMS are as follows:
Mapping In this step, we identify parameters in the lan-
guage models that account for additional weights. For
CogVLM [25], all weights within the visual experts in
the attention mechanism (including the QKV matrix and
the FFN of the visual expert) are treated as additional
weights. For mPLUG-Owl2 [28], vision representation
weights within the Modality-Adaptive Modules (such as the
decoupled vision layer-norm and KV matrix) are considered
additional weights. For different vision encoders, the vision
encoder weights of the base model are retained as the final
weights after merging, regardless of the vision encoder in
the other model.
Merging During this step, we first merge the weights in
the language model of the base model. If the weights are
not classified as additional weights in the Mapping step,
they are merged using linear interpolation or other baseline
merging techniques. For weights categorized as additional
weights, we check whether the other model has duplicated
the same weights. Based on this, we (1) merge the weights
if duplicates exist, or (2) retain the original weights in the
base model if no duplicates are found.
Searching In the final step, we randomly select a subset
of 100 test inputs to determine the optimal α. For each α
candidate, we generate model responses for the selected in-
puts. To select the best α, we apply the Exact Match metric
for the total difference score: for each input, if the merged
model’s response with a given α matches the response with
adjacent α values, the difference score is 0; otherwise, it
is 1. The total difference score is the sum of scores across
all inputs in the subset. The α with the lowest total dif-
ference score is selected as the final choice. Note that the
small subset of 100 inputs is randomly sampled using the
method in LMMs-Eval framework [31]. We have repeated
the sampling process to ensure that the randomness in sam-
pling does not affect the performance of our method.

C. Evaluation Details
We utilize LMMs-Eval [31] and VLMEvalKit [3], two
open-source evaluation frameworks for MLLMs, to as-

sess our models. Specifically, for evaluating MMMU
[30], MME [5], SEEDBench [11], OCRBench [15], and
TextVQA [18] within the Qwen2-VL [24] architecture, we
use the VLMEvalKit framework, while LMMs-Eval is em-
ployed for the others. To ensure consistency with the re-
ported results for LLaVA and mPLUG-Owl2 on OK-VQA
[16], we adapted the prompt template in the evaluation
framework, as detailed in Table 7. Other prompt templates
remains the same in the evaluation frameworks.

D. Comparing Supervised and Unsupervised
We compared AdaMMS with baseline merging methods
with supervised hyper-parameter selection. Due to the ab-
sence of separate test sets, we trained the supervised base-
line on either a subset or the entirety of the evaluation
set. This implies that the supervised baseline was in a
more favorable position compared to our method, as our
method does not have access to the groudtruth labels.
Table 8 shows that AdaMMS still outperforms it, indicating
the superiority of our unsupervised method.

E. Intermediate Results in Searching
We present an example of the intermediate results during
the selection of α. As shown in Figure 14, AdaMMS ef-
fectively identifies a near-optimal α, achieving performance
close to the best possible outcome. Specifically, our un-
supervised hyper-parameter selection method successfully
chooses the optimal α candidate in half of the benchmarks
and maintains a deviation of no more than 0.2 from the best
α in the remaining cases.

Figure 5 illustrates the relationship between model
performance and generation consistency across MMMU,
MME, SeedBench, and OCRBench when merging LLaVA-
OneVision into Qwen2-VL. The observed trends validate
our approach in the search step, where model performance
is approximated using generation consistency without rely-
ing on labeled data. Notably, for these tasks, the α selected
by our method corresponding to the highest generation con-
sistency deviates from the α achieving the best performance
by no more than 0.1, showing that our hyper-parameter se-
lection method achieves near-optimal performance.

Framework Base Model Prompt

LMMs-Eval LLaVA Answer the question using a single word or phrase.mPLUG-Owl2

Table 7. Altered prompt for evaluation on OK-VQA.

F. Supplementary Proof
We provide the following proof as the theoretical justifica-
tion for relationship between generation consistency corre-
lates and model performance.

Proof. Using the notation in Section 3.3, for an arbitrary
task ti, let Sti(α) be the ratio of correct answer at position
α, and Dti(α;α

−) be the ratio of the difference in generated
responses between position α and its adjacent candidate
α−. Since the difference in Sti(α) is only influenced by the
subset of generated responses where the correctness status
changes (i.e., transitions between correct and incorrect), we
have |Sti(α) − Sti(α

−)| ≤ Dti(α;α
−). For the same rea-

son with α+, we can prove |Sti(α)−Sti(α
−)|+ |Sti(α)−

Sti(α
+)| ≤ 2Dti(α;α

−, α+). Therefore, a higher gen-
eration consistency with small Dti(α;α

−, α+) implies a
higher model performance Sti(α), due to its convexity.

G. Experimental Results in Granularity for α

Figure 4 presents the result of AdaMMS at different gran-
ularities of α. The point in stars indicates the best α by
our unsupervised parameter selection method. The result
shows that these granualities in {0.02, 0.05, 0.10} behave
similarly in terms of the final performance, indicating the
robustness of AdaMMS. Therefore, in practice we choose a
larger α so that we have fewer α candidates, which reduces
the computation cost.

Model MMMUval MMEsum SeedBenchall OCRBench TextVQAval OKVQA GQA VizWizval Sum Diff
AdaMMS 34.90 69.09 64.12 55.70 76.90 61.11 60.12 37.27 459.21 +31.23
Ties-Merging 34.00 57.29 38.97 55.00 59.73 40.31 51.97 24.36 361.63 -66.35
Ties-Merging (supervised with 100 eval. samples) 37.20 57.29 63.12 55.90 76.50 61.45 55.81 37.98 445.25 +17.27
Ties-Merging (supervised with all eval. data) 37.20 63.96 65.43 55.90 76.55 61.45 57.99 38.21 456.69 +28.71

Table 8. AdaMMS and Ties-Merging with supervised hyper-parameter selection via validation set.

0.0 0.1 0.2 0.3 0.4 0.5
 in Linear Interpolation

81.0

81.5

82.0

82.5

83.0

83.5

M
M

E
Sc

or
es

 (%
)

 = 0.05
 = 0.02
 = 0.10

AdaMMS in 0.02 and 0.05
AdaMMS in 0.10

0.0 0.1 0.2 0.3 0.4 0.5 0.6
 in Linear Interlopation

72

74

76

78

80

82

84

86

OC
RB

en
ch

 S
co

re
s (

%
)

 = 0.02
 = 0.05
 = 0.10

AdaMMS in 0.02 and 0.05
AdaMMS in 0.10

Figure 4. Results on linear interpolation at different granularities of α when merging LLaVA-OneVison-7B into Qwen2-VL-7B-7B. (Left:
MME, Right: OCRBench)

Model MMMUval MMEsum SeedBenchall OCRBench TextVQAval OKVQA GQA VizWizval SUM Top2

Task Arithmetic 13.21 21.53 14.54 -1.80 -3.74 13.88 -2.95 -7.29 47.45 7
Ties-Merging -3.32 -24.94 -27.34 1.20 -31.59 -23.23 -29.70 -29.20 -168.05 0
DARE-Linear 8.15 -2.35 10.58 -12.3 -19.23 5.41 -12.76 -21.09 -43.53 0
DARE-Ties -14.83 -60.56 -6.96 -47.50 -47.12 -31.08 -26.32 -32.45 -266.76 0
MetaGPT 1.44 -2.93 -4.02 15.30 0.37 -6.75 -23.69 -16.73 -36.94 2
AdaMMS 17.68 17.48 12.02 13.60 18.43 13.40 1.40 -2.14 91.92 9

Table 9. Results of the performance gain sum among six model pairs reported in our paper, as described in Appendix A. The performance
gain for each task is computed as the difference between the performance of our method (or baselines) and the average performance of the
two original models, with positive values indicating an improvement.

Model Unsupervised MMMUval MMEsum SeedBenchall OCRBench TextVQAval OKVQA GQA VizWizval SUM Top2

Original Models

LLaVA(base) 35.10 66.68 60.52 31.30 46.04 53.42 61.94 54.29 409.29
mPLUG-Owl2 34.90 62.80 59.41 34.10 55.13 60.98 56.11 32.07 395.50

Baselines
Task Arithmetic × 36.00 (+1.00) 67.00 (+2.26) 61.45 (+1.48) 30.40 (-2.30) 45.75 (-4.84) 56.79 (-0.41) 59.68 (+0.66) 56.49 (+13.31) 413.56 (+11.17) 5
Ties-Merging × 33.60 (-1.40) 62.14 (-2.60) 60.32 (+0.35) 30.10 (-2.60) 42.85 (-7.73) 52.46 (-4.74) 58.37 (-0.66) 51.30 (+8.12) 391.14 (-11.25) 0
DARE-Linear × 36.00 (+1.00) 67.00 (+2.26) 61.41 (+1.44) 30.70 (-2.00) 45.84 (-4.74) 57.06 (-0.14) 59.56 (+0.54) 55.90 (+12.72) 413.47 (+11.08) 2
DARE-Ties × 31.70 (-3.30) 59.81 (-4.93) 60.06 (+0.09) 29.50 (-3.20) 41.90 (-8.69) 46.00 (-11.20) 57.51 (-1.52) 53.27 (+10.09) 379.75 (-22.64) 0
MetaGPT ✓ 35.30 (+0.30) 67.62 (+2.88) 61.46 (+1.49) 30.60 (-2.10) 45.80 (-4.79) 56.54 (-0.66) 59.41 (+0.38) 56.66 (+13.48) 413.39 (+11.00) 4

Our Method
AdaMMS ✓ 38.30 (+3.30) 67.01 (+2.27) 61.82 (+1.85) 31.00 (-1.70) 46.49 (-4.09) 55.60 (-1.60) 61.81 (+2.79) 54.64 (+11.46) 416.67 (+14.28) 7

Table 10. Results on merging mPLUG-Owl2-7B into LLaVA-v1.5-7B.

Model Unsupervised MMMUval MMEsum SeedBenchall OCRBench TextVQAval OKVQA GQA VizWizval SUM Top2
Original Models

mPLUG-Owl2(base) 34.90 62.80 59.41 34.10 55.13 60.98 56.11 32.07 395.50
LLaVA 35.10 66.68 60.52 31.30 46.04 53.42 61.94 54.29 409.29

Baselines
Task Arithmetic × 36.90(+1.90) 63.17(-1.57) 60.44(+0.47) 33.00(+0.30) 55.40(+4.81) 63.87(+6.67) 56.97(-2.06) 33.70(-9.48) 403.45(+1.05) 4
Ties-Merging × 36.90(+1.90) 64.20(-0.54) 60.13(+0.16) 34.40(+1.70) 54.50(+3.91) 62.92(+5.72) 57.55(-1.48) 33.18(-10.00) 403.78(+1.38) 4
DARE-Linear × 36.20(+1.20) 62.99(-1.75) 60.41(+0.44) 32.60(-0.10) 55.15(+4.56) 63.47(+6.27) 56.73(-2.30) 33.35(-9.83) 400.90(-1.50) 2
DARE-Ties × 35.30(+0.30) 60.37(-4.37) 58.36(-1.61) 32.00(-0.70) 51.65(+1.06) 58.08(+0.88) 55.57(-3.46) 31.03(-12.15) 382.36(-20.04) 0
MetaGPT ✓ 36.00(+1.00) 64.24(-0.50) 60.23(+0.26) 33.90(+1.20) 55.83(+5.24) 62.88(+5.68) 56.53(-2.50) 33.35(-9.83) 402.96(+0.56) 3

Our Method
AdaMMS ✓ 37.60(+2.60) 64.61(-0.13) 60.02(+0.05) 32.20(-0.50) 55.84(+5.25) 63.13(+5.93) 56.98(-2.05) 33.39(-9.79) 403.77(+1.37) 6

Table 11. Results on merging LLaVA-v1.5-7B into mPLUG-Owl2-7B.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.3

0.4

0.5

0.6

0.7

Co
ns

ist
en

cy
MME

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.3

0.4

0.5

0.6

0.7

MMMU

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Co
ns

ist
en

cy

OCRBench

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.6

0.7

0.8

0.9

1.0
SeedBench

81.50

81.75

82.00

82.25

82.50

82.75

83.00

83.25

47

48

49

50

51

Sc
or

e

72

74

76

78

80

82

84

86

47

48

49

50

51

Sc
or

e

Consistency
Score

Figure 5. Generation consistency and model performance (score) for MME, MMMU, OCRBench and SeedBench when merging LLaVA-
OneVision-7B into Qwen2-VL-7B. Generation consistency is calculated as the reciprocal of the sum of different responses from models
with adjacent α candidates. The horizontal axis is the α of the linear interpolation.

Model Unsupervised MMMUval MMEsum SeedBenchall OCRBench TextVQAval OKVQA GQA VizWizval SUM Top2
Original Models

mPLUG-Owl2(base) 34.90 62.80 59.41 34.10 55.13 60.98 56.11 32.07 395.50
CogVLM 34.80 59.23 61.22 56.50 77.57 60.82 59.43 37.09 446.66

Baselines
Task Arithmetic × 38.80(+3.95) 64.65(+3.63) 60.85(+0.53) 31.50(-13.80) 56.99(-9.36) 60.93(+0.03) 54.44(-3.33) 32.76(-1.82) 400.92(-20.16) 8
Ties-Merging × 27.9(-6.95) 48.96(-12.06) 52.32(-8.00) 24.30(-21.00) 42.10(-24.25) 54.15(-6.75) 43.02(-14.75) 27.56(-7.02) 320.31(-100.77) 0
DARE-Linear × 37.60(+2.75) 62.44(+1.42) 59.81(-0.51) 30.90(-14.40) 56.41(-9.94) 61.07(+0.17) 54.11(-3.66) 32.42(-2.16) 394.76(-26.32) 1
DARE-Ties × 32.00(-2.85) 57.90(-3.12) 57.62(-2.70) 24.10(-21.20) 43.84(-22.51) 51.56(-9.34) 52.04(-5.73) 25.67(-8.91) 344.73(-76.35) 0
MetaGPT ✓ 31.30(-3.55) 56.81(-4.21) 50.81(-9.51) 29.30(-16.00) 37.96(-28.39) 43.02(-17.88) 34.12(-23.65) 15.84(-18.74) 299.16(-121.92) 0

Our Method
AdaMMS ✓ 39.10(+4.25) 64.65(+3.63) 60.16(-0.16) 30.60(-14.70) 55.88(-10.47) 62.11(+1.21) 55.61(-2.16) 32.69(-1.89) 400.80(-20.28) 9

Table 12. Results on merging CogVLM-7B into mPLUG-Owl2-7B.

Model Unsupervised MMMUval MMEsum SeedBenchall OCRBench TextVQAval OKVQA GQA VizWizval SUM Top2
Original Models

CogVLM(base) 34.80 59.23 61.22 56.50 77.57 60.82 59.43 37.09 446.66
mPLUG-OWI2 34.90 62.80 59.41 34.10 55.13 60.98 56.11 32.07 395.50

Baselines
Task Arithmetic × 38.30(+3.45) 72.11(+11.09) 67.24(+6.92) 51.90(+6.60) 70.68(+4.33) 63.59(+2.69) 59.98(+2.21) 37.16(+2.58) 460.96(+39.88) 7
Ties-Merging × 34.60(-0.25) 53.54(-7.48) 61.73(+1.41) 50.70(+5.40) 66.65(+0.30) 58.19(-2.71) 52.66(-5.11) 33.92(-0.66) 411.99(-9.09) 0
DARE-Linear × 39.20(+4.35) 68.80(+7.78) 66.66(+6.34) 50.90(+5.60) 70.35(+4.00) 63.26(+2.36) 58.80(+1.03) 36.80(+2.22) 454.77(+33.69) 3
DARE-Ties × 29.00(-5.85) 53.89(-7.12) 61.61(+1.30) 42.90(-2.40) 63.46(-2.89) 54.34(-6.56) 55.54(-2.23) 33.96(-0.62) 394.70(-26.38) 0
MetaGPT ✓ 34.90(+0.05) 61.54(+0.52) 62.93(+2.62) 57.30(+12.00) 77.18(+10.83) 61.55(+0.65) 59.93(+2.16) 37.15(+2.57) 452.48(+31.40) 2

Our Method
AdaMMS ✓ 38.10(+3.25) 62.48(+1.46) 66.79(+6.48) 56.30(+11.00) 76.89(+10.54) 61.71(+0.81) 59.96(+2.19) 37.33(+2.75) 459.56(+38.48) 6

Table 13. Results on merging mPLUG-Owl2-7B into CogVLM-7B.

Model MMMUval MMEsum SeedBenchall OCRBench TextVQAval OKVQA GQA VizWizval SUM

Original Models
Qwen2-VL(base) 50.11 81.44 75.85 86.00 84.12 51.43 61.80 68.32 559.07

LLaVA-OneVision 43.44 77.04 75.44 69.60 78.47 49.57 59.84 60.97 514.37
AVG 46.78 79.24 75.65 77.80 81.30 50.50 60.82 64.65 536.72

Linear Interpolation
α-0.1 50.56 81.46 76.20 85.50 83.41 53.56 62.02 68.40 561.11
α-0.2 51.11 82.36 76.23 85.20 81.74 54.76 62.05 67.12 560.57
α-0.3 51.22 83.36 76.34 84.40 78.43 52.03 61.44 63.91 551.13
α-0.4 50.67 83.03 76.06 80.70 71.66 49.83 60.09 58.43 530.47
α-0.5 50.00 81.37 75.63 76.40 59.13 44.96 55.53 52.60 495.62
α-0.6 47.00 82.06 74.76 71.30 39.37 40.31 54.11 46.39 455.30

Our Method
AdaMMS 51.11 83.36 76.20 85.50 83.41 53.56 62.02 68.40 563.56

Selected α 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 -
Distance with the best α 0.1 0 0.2 0 0 0.1 0.1 0 -

Table 14. Intermediate results on different α candidates in the linear interpolation of AdaMMS, and the α selected by our unsupervised
hyper-parameter selection method on merging LLaVA-OneVision-7B into Qwen2-VL-7B. AVG indicates the average performance of the
two original models.

