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Supplementary Material

We present detailed benchmarks, including separate
evaluations for visible light and near-infrared (NIR) spectra.
Additionally, we provide illumination-specific benchmarks
for the expansion dataset. To enhance understanding, we in-
clude more visual results from both the original and expan-
sion datasets. Lastly, we offer a comprehensive comparison
of existing hyperspectral imaging (HSI) datasets for natural
scenes.

8. Detailed Evaluation of Calibration Methods:
Visible and Near-Infrared Ranges

To further verify the quality of the spectral calibration, we
evaluate the calibrated HSIs from the visible (400-700nm)
and near-infrared (700-1000nm) perspectives. We conduct
experiments on both the BJTU-UVA and BJTU-UVA-E
datasets.

Comparison on the BJTU-UVA Table 4 presents the re-
sults. Compared to other learning-based methods, our ap-
proach demonstrates a significant advantage across all eval-
uation metrics in both the visible and near-infrared (NIR)
ranges.

In the visible range, our proposed SIT model achieves
superior scores in PSNR, RMSE, and ERGAS. Notably,
the Gray-World method excels in visible range calibration,
achieving the best SAM value. Leveraging the strengths
of the Gray-World approach, our SIT model is designed
to more effectively capture illumination compared to other
learning-based methods.

In the NIR range, the performance of all methods de-
clines considerably, underscoring the inherent challenges of
this spectrum compared to the visible range. Despite this,
our method consistently achieves the best scores across all
metrics, reaffirming its robustness. The inclusion of the
NIR spectrum in our dataset emphasizes the need to ad-
dress these challenges and drive further advancements in
this area.

Comparison on the BJTU-UVA-E On the BJTU-UVA-
E dataset, our proposed SIT model consistently achieved
the best scores across all evaluation metrics. In this context,
the Gray-World method was not comparable to the learning-
based approaches. Similarly, a significant performance drop
was observed in the NIR range, highlighting the persistent
challenges associated with this spectrum. Addressing the

calibration limitations of the NIR range remains an open
challenge for future research.

9. Evaluation on Different Illumination Condi-
tions of the BJTU-UVA-E Dataset

To evaluate model performance under varying illumination
conditions, we analyzed the PSNR calibration results across
ten different illumination settings. The definitions and spec-
tra of these illumination settings are illustrated in Fig. 3, and
the results are summarized in Table 5.

The Gray-World method, which relies on linear func-
tions of averaging and division, produces uniform predic-
tions across different illumination settings, making it in-
comparable to other methods in this context. By contrast,
our proposed SIT method consistently outperforms all com-
petitors across all illumination settings.

Focusing on the five natural illuminations, we observe
that dusk (du) and shadowy (sh) conditions pose greater
calibration challenges due to their low-light environments.
Even in these difficult settings, our method achieves the
highest PSNR values, with 37.1 in ”du” and 36.3 in ”sh”
for the NIR range.

For the five color-filtered illuminations, the red-filtered
illumination presents the most significant challenge, as it
limits visible light intensity between 400nm and 500nm.
Despite this, our method maintains its superior perfor-
mance.

10. More Qualitative Analysis
We present six examples from the BJTU-UVA dataset in
Fig. 7 and Fig. 8, and six additional examples in Fig. 9 and
Fig. 10. Each example includes the following evaluations:
• First row: The first two images represent the uncali-

brated HSI and the ground truth for the calibrated HSI,
both rendered as RGB images for visualization. Columns
3 to 7 display error heat maps of the calibration results
from five methods across the full spectral range.

• Second and third rows: These rows visualize the error
heat maps specifically for the visible and near-infrared
spectral ranges, respectively.

• Bottom-left corner: The spectrum of a selected pixel
is plotted, showing the output from various calibration
methods for comparison.
For the BJTU-UVA heat maps, we use a threshold of

0.14, derived from the global 95th percentile of a randomly
selected subset. For the BJTU-UVA-E heat maps, we set



Val Test

VIS NIR VIS NIR

P↑ S ↓ R↓ E↓ P↑ S ↓ R↓ E↓ P↑ S ↓ R↓ E↓ P↑ S ↓ R↓ E↓

BJTU-UVA

Gray-World[5] 26.0 2.5 5.4 8.9 21.4 3.1 10.8 10.5 25.1 2.8 6.0 13.3 22.3 3.3 9.4 9.8
DivIll[23] 25.6 5.7 6.3 9.6 21.7 5.3 9.6 9.8 25.0 6.2 6.0 10.6 22.5 5.9 8.7 9.2
SERT[19] 24.1 10.5 6.3 12.4 20.2 11.2 9.9 13.2 23.6 10.6 6.1 14.2 20.8 11.5 9.1 12.7

HCANet[13] 27.5 4.5 5.0 8.2 23.6 4.1 7.7 8.9 26.6 4.5 5.0 10.3 23.9 4.3 7.3 9.1
SIT(proposed) 28.5 2.9 4.5 8.1 24.1 3.0 7.3 8.7 27.4 3.1 4.6 10.0 24.5 3.3 6.6 8.9

BJTU-UVA-E

Gray-World[5] 25.9 2.2 5.7 9.1 21.3 3.0 11.1 10.6 25.0 2.2 6.2 13.6 22.4 3.2 9.5 9.8
DivIll[23] 36.6 3.3 1.7 2.9 33.4 3.3 2.5 2.6 37.0 3.7 1.5 3.1 33.1 3.7 2.6 2.9
SERT[19] 37.3 3.1 1.8 2.9 33.3 3.1 2.6 3.0 37.8 3.3 1.5 3.0 33.1 3.3 2.5 3.0

HCANet[13] 40.6 2.2 1.0 1.9 35.3 2.2 1.8 2.1 41.1 2.4 0.9 2.1 34.7 2.4 1.9 2.3
SIT(proposed) 42.5 1.7 0.8 1.5 37.2 1.7 1.5 1.7 43.2 1.8 0.7 1.6 36.5 1.8 1.6 1.9

Table 4. Automatic spectral calibration evaluation on both visible-spectrum (VIS, 400nm-700nm) and near-infrared (NIR, 700nm-1000nm)
HSI: PSNR(P), SAM(S), RMSE (R%), and ERGAS (E%).

Validation Set Test Set
sd cd rd du sh bl re ye gr pu sd cd rd du sh bl re ye gr pu

Gray-World[5]
vis 25.9 25.9 25.9 25.9 25.9 25.9 25.9 25.9 25.9 25.9 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
nir 21.3 21.3 21.3 21.3 21.3 21.3 21.3 21.3 21.3 21.3 22.4 22.4 22.4 22.4 22.4 22.4 22.4 22.4 22.4 22.4

whole 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2

DivIll[23]
vis 37.5 38.9 39.1 36.5 31.8 38.1 34.2 38.1 36.9 38.6 37.9 39.8 39.6 36.5 30.8 38.8 34.7 38.4 37.7 39.3
nir 34.0 32.1 33.9 32.5 29.4 34.8 35.1 33.8 35.8 35.8 33.4 32.9 33.5 32.0 28.6 34.5 34.8 33.6 35.3 35.4

whole 35.9 34.8 36.2 34.7 31.0 36.7 35.2 36.0 36.9 37.5 35.7 35.9 36.1 34.5 30.4 36.7 35.5 36.0 36.9 37.6

HCANet[13]
vis 43.1 43.0 42.6 40.8 41.4 40.8 34.5 39.6 38.4 41.8 43.9 44.4 43.5 41.8 42.9 41.7 35.2 40.1 38.9 42.2
nir 35.8 34.4 34.6 34.3 33.8 36.0 36.2 35.7 36.2 36.2 35.3 34.6 34.0 34.2 33.9 35.6 35.8 35.3 35.8 35.8

whole 38.6 37.4 37.4 37.0 36.7 38.3 35.7 37.7 37.6 38.6 38.4 37.9 37.1 37.2 37.1 38.3 36.1 37.6 37.6 38.5

SERT[19]
vis 40.5 42.6 38.2 36.1 28.1 38.0 35.2 38.8 38.1 40.7 41.1 43.4 38.7 36.4 29.6 38.4 35.2 39.4 38.4 41.2
nir 32.9 34.3 32.2 31.4 25.4 35.4 35.9 36.2 35.7 36.2 32.4 34.6 32.2 31.1 26.0 35.0 35.5 35.5 35.4 35.9

whole 35.8 37.3 34.8 33.8 26.9 37.1 36.1 37.7 37.2 38.5 35.7 37.8 35.1 33.9 28.1 37.1 36.1 37.5 37.3 38.4

SIT
vis 44.5 47.7 46.2 42.7 43.9 42.5 36.4 40.3 39.3 44.8 45.3 48.4 47.2 43.1 44.8 42.8 36.8 41.0 40.0 45.5
nir 37.4 37.6 37.4 37.1 36.3 37.8 38.0 37.7 37.9 38.3 36.5 37.1 36.8 36.4 35.7 37.0 37.2 36.9 37.0 37.6

whole 40.2 40.8 40.3 39.6 39.1 40.0 37.6 39.2 38.9 41.0 39.7 40.5 40.1 39.2 38.9 39.6 37.5 39.1 38.8 40.6

Table 5. Calibration results (PSNR) of visible, near-infrared, and full-range on the validation and test sets of BJTU-UVA-E.

the threshold to 0.03, based on the global 85th percentile of
a similar subset, to enhance the clarity of the comparisons.

Qualitative Analysis on BJTU-UVA As illustrated in
Fig. 7(c), the calibration errors of our proposed SIT method
are the smallest across all regions, particularly for pure blue
areas. In contrast, other methods struggle to achieve ac-
curate calibration, especially in the right regions contain-
ing more red areas. The spectral analysis further confirms
that the calibrated spectrum curve produced by SIT ex-
hibits the highest similarity to the ground truth. From the
visualization results in the visible (VIS) and near-infrared
(NIR) spectral ranges, it is evident that the error maps of
NIR from other methods display significantly more red ar-
eas compared to VIS. In contrast, the heatmap generated by
SIT remains predominantly blue, demonstrating its ability
to effectively handle calibration in the near-infrared range.
In the remaining five examples, our method consistently

achieves the best results.

Qualitative Analysis on BJTU-UVA-E Similarly, our
SIT method outperforms other approaches on the BJTU-
UVA-E dataset. For instance, in Fig. 9(c), the Gray-World
method performs poorly, with a calibrated spectrum that de-
viates significantly from the ground truth. The shrubbery
regions with shadow in this example present a particular
challenge, especially in the NIR range, yet the SIT method
achieves near-perfect calibration in these areas. Across
other examples, it is apparent that the Gray-World method
consistently underperforms on the BJTU-UVA-E dataset,
while SIT maintains superior results.

11. Comparison with Existing Hyperspectral
Datasets for Natural Scenes

As shown in Table 6, the rapid development of hyper-
spectral imaging devices has shifted research focus from



Dataset Bands Images Spectral Range Spatial Resolution Denoising Super-resolution Spectral Recovery Spectral Calibration Year
CAVE [35] 31 32 400-700 512×512 ✓ ✓ ✓ 2010

Harvard [36] 31 50 400-700 1392×1040 ✓ ✓ ✓ 2011
NUS [37] 31 64 400-700 1392×1300 ✓ ✓ ✓ 2014
ICVL [38] 31 201 400-700 1392×1300 ✓ ✓ ✓ 2016

NTIRE’18 [39] 31 256 400-700 480×512 ✓ 2018
NTIRE’20 [40] 31 510 400-700 480×512 ✓ 2020
NTIRE’22 [41] 31 1000 400-700 480×512 ✓ 2022

FHRS [42] 31 607 400-700 512×512 ✓ 2023
BJTU-UVA 204 765 (7650) 400-1000 512×512 ✓* ✓* ✓* ✓ 2024

Table 6. Comparison of public hyperspectral image datasets. Only the proposed dataset BJTU-UVA is suitable for auto-calibration because
other datasets don’t provide raw data. Although this paper focuses on auto-calibration, other tasks are also possible by the proposed dataset,
which will be released later. 7650 is the size of the expansion dataset.

traditional remote sensing to natural environments on the
ground. In natural scenes, several hyperspectral datasets
have been proposed for restoration tasks, including denois-
ing [19], spatial super-resolution [43], and spectral super-
resolution [42]. These datasets typically focus on the visible
spectrum, ranging from 400 nm to 700 nm, and downsam-
ple the spectral resolution at intervals of 10 nm.

To enable comprehensive spectral recovery across both
the visible and near-infrared ranges, our proposed dataset
retains the full-spectrum data while also providing visible-
range HSIs with 31 channels. Additionally, our dataset
contains significantly more images compared to other HSI
datasets, making it uniquely comprehensive. Importantly,
only our proposed BJTU-UVA dataset is suitable for auto-
calibration, as other datasets do not include raw data essen-
tial for this task.

Although this paper focuses on auto-calibration, the
BJTU-UVA dataset is versatile and can support other tasks
as well. The dataset will be publicly released in the future
to facilitate further research.
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Figure 7. Visual Comparison of Absolute Error Using Heat Maps on BJTU-UVA. First row: Uncalibrated HSI, ground truth, and error
maps (full spectrum) for five methods. Second and third rows: Error maps for VIS and NIR ranges. Bottom-left: Pixel spectra comparison
across methods.
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Figure 8. Visual Comparison of Absolute Error Using Heat Maps on BJTU-UVA.
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Figure 9. Visual Comparison of Absolute Error Using Heat Maps on BJTU-UVA-E.
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Figure 10. Visual Comparison of Absolute Error Using Heat Maps on BJTU-UVA-E.
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