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A. Detailed Formulations
Disentanglement Loss: Our proposed disentanglement
loss (Sec 3.2 of the manuscript) aims to minimize mutual
information (MI) between modality-shared and modality-
specific representations. As MI is intractable, we leverage
an upper bound called the contrastive log-ratio upper bound
(CLUB) [4, 19] as an MI estimator. Given sample pairs
{(aj , bj)}Nj , CLUB is defined as:

ICLUB(a, b) = Ep(a,b)[log p(b|a)]− Ep(a)Ep(b)[log p(b|a)]
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where log p(bj |aj) denotes the conditional log-likelihood
of a positive sample pair (aj , bj), and {log p(bk|aj)}j ̸=k

is the conditional log-likelihood of a negative sample
pair (aj , bk). However, as STiL obtains modality-shared
and modality-specific representations simultaneously dur-
ing training, the exact conditional distribution between
these two representations is unavailable. To address this
limitation, similar to [4, 19], we leverage a variational distri-
bution qθ(b|a) (an MLP layer with parameter θ) to approx-
imate p(b|a). This leads to a variational CLUB (vCLUB),
formulated as:

IvCLUB(a, b) = Ep(a,b)[log qθ(b|a)]− Ep(a)Ep(b)[log qθ(b|a)]
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(S2)
⋆Corresponding authors.

To enforce qθ(b|a) align closely with p(b|a), we maxi-
mize the following log-likelihood:

Lqθ (a, b) =
1

N

N∑
j

log qθ(bj |aj). (S3)

Finally, our disentanglement losses Li
ds and Lt

ds can be for-
mulated as:
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where zi
c and zt

c are modality-specific representations and
zi
s and zt

s are modality-shared representations. These two
losses are used in Eq. (3) of the manuscript.

B. Implementation Details
Datasets: The UK Biobank (UKBB) dataset [14] consists
of magnetic resonance images (MRIs) and tabular data re-
lated to cardiac diseases. Following prior work [5, 8], we
used mid-ventricle slices from cardiac MRIs in three time
phases, i.e., end-systolic (ES) frame, end-diastolic (ED)
frame, and an intermediate time frame between ED and
ES. In addition, we employed 75 disease-related tabular fea-
tures, including 26 categorical features (e.g., alcohol drinker
status) and 49 continuous features (e.g., average heart rate).
The DVM dataset [10] includes 2D RGB car images along
with tabular data describing the characteristics of the car.
As done in [5, 8], we employed 17 tabular features, includ-
ing 4 categorical features (e.g., color), and 13 continuous
features (e.g., width). Detailed benchmark information can
be found in the supplementary material of [5].

To construct a training dataset with 10% labeled sam-
ples, we randomly sampled 10% of the labeled instances
from each class, ensuring that the class distribution remains
consistent with the original training dataset. A similar pro-
cedure is followed when creating the 1% labeled dataset.
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Table S1. Definitions of symbols used for STiL’s hyper-
parameters.

Description
B Batch size of labeled data
µ Relative size ratio between labeled and unlabeled batches
α Weighting coefficient controlling the labeled cross-entropy loss Lce

β Weighting coefficient controlling the contrastive consistency loss Lcc

γ Weighting coefficient controlling the disentanglement losses Li
ds and Lt

ds

λp Weighting coefficient controlling the prototypical contrastive loss Lpt

λu Weighting coefficient controlling the unlabeled cross-entropy loss Luce

τ Threshold for defining confident pseudo-labels
r Smoothness Weighting coefficient in PGLS
m Momentum coefficient for EMA
κ Temperature parameter

Table S2. Hyper-parameter settings for STiL.

Task B µ α β γ λp λu τ r m κ

DVM 64 7 0.2 3 0.5 1 0.2 0.9 0.9 0.996 0.1
1% CAD

32 7 0.2 0.5 5 0.5 5
0.85

0.95 0.4 0.1
10% CAD 0.8
1% Infa.

32 7 0.2 1 1 0.5 2
0.85

0.95 0.4 0.1
10% Infa. 0.8

We adopted the same data augmentation technique as de-
scribed in [5, 8]. For image data, we employed random
scaling, rotation, shifting, flipping, Gaussian noise, as well
as brightness, saturation, and contrastive changes, followed
by resizing the images to 128× 128. For tabular data, cate-
gorical values (e.g., ’yes’, ’no’, and ’blue’) were converted
into ordinal numbers, while continuous (numerous) values
were standardized using z-score normalization. To enhance
data diversity, we randomly replaced 30% of the tabular val-
ues for each subject with random values from the respec-
tive columns. Note that tabular SSL models (SCARF [1]
and SAINT [13]) implement their own tabular augmenta-
tion strategies. The hyper-parameters and training configu-
rations for the supervised and SSL models were consistent
with those used in [5, 8]. The batch size was set to 512 for
DVM and 256 for both CAD and Infarction. The hyper-
parameter settings for the proposed STiL and SemiSL algo-
rithms are detailed below.
The Proposed STiL: We used ResNet-50 as the image en-
coder and a transformer-based tabular encoder proposed by
Du et al. [5], both initialized with publicly available pre-
trained weights from [5]. The tabular encoder consists of 4
transformer layers, each with 8 attention heads and a hid-
den dimension of 512. For a fair comparison, all SemiSL
methods used the same pre-trained encoders. Details of
STiL’s hyper-parameters and their configurations are pro-
vided in Tab. S1 and Tab. S2, respectively. Based on valida-
tion performance, we set the starting pseudo-labeling epoch
to 25 for 10% labeled DVM, 35 for 1% labeled DVM, and
8 for both CAD and Infarction. The GFLOPS for STiL is
3.63.
CoMatch [12]: This framework relies on strong-to-weak

consistency regularization and contrastive learning. It
refines pseudo-labels by incorporating information from
nearby samples in the embedding space, and then uses these
pseudo-labels to regulate the structure of embeddings via
graph-based contrastive learning. Following the original pa-
per, we set the weight factors for unlabeled classification
loss and contrastive loss, λcls and λctr, to 10. The smooth-
ness parameter α was set to 0.9, the embedding memory
bank size K to 2,560, the temperature parameter to 0.1, and
the EMA momentum to 0.996. The batch sizes for the la-
beled and unlabeled data were the same as those used in
STiL. Additionally, based on validation performance, we
set the thresholds for strong-to-weak consistency and graph-
based contrastive learning as follows: τ = 0.8 and T = 0.6
for DVM, and τ = 0.6 and T = 0.3 for both CAD and
Infarction. The starting pseudo-labeling epoch was 10 for
DVM and 8 for CAD and Infarction.
CoMatchM : This model is an extension of CoMatch to
the multimodal image-tabular setting. Its hyper-parameters
were the same as those in CoMatch. Based on validation
performance, we set the thresholds for strong-to-weak con-
sistency and graph-based contrastive learning as follows:
τ = 0.9 and T = 0.8 for DVM, and τ = 0.85 and T = 0.7
for CAD and Infarction.
SimMatch [20]: This algorithm applies strong-to-weak
consistency regularization at both the semantic and instance
levels. It encourages different augmented views of the same
instance to have the same class prediction and maintain sim-
ilar similarity relationships with respect to other instances.
Following the original paper, we set the weight factors for
the unlabeled classification loss and the instance consis-
tency regularization loss, i.e., λu and λin, to 10 and 5, re-
spectively. The smoothness parameter α was set to 0.9, the
temperature parameter to 0.1, and the EMA momentum to
0.996. The batch sizes for labeled and unlabeled data were
the same as those used in STiL. Based on validation per-
formance, we set the threshold in strong-to-weak consis-
tency regularization to 0.8 for DVM and to 0.6 for CAD
and Infarction. The starting pseudo-labeling epoch was 10
for DVM and 8 for CAD and Infarction.
SimMatchM : This model is an adaptation of SimMatch
to the multimodal image-tabular setting. The hyper-
parameters were the same as those used in SimMatch. Ac-
cording to validation performance, we set the threshold for
strong-to-weak consistency regularization τ to 0.9 for DVM
and to 0.85 for CAD and Infarction.
FreeMatch [17]: This approach is also based on strong-to-
weak consistency regularization and focuses on effectively
leveraging unlabeled data. It adjusts the confident threshold
in a self-adaptive manner according to the model’s learning
progress. Following the original paper, we set the weight
factors for unlabeled classification loss and self-adaptive
fairness loss, i.e., wu and wf , to 1 and 0.001, respectively.



Table S3. Number of parameters and learning rates for DVM, CAD, and Infarction across different algorithms. We provide the number of
parameters used during both training and testing. For SSL methods, the learning rates are reported for both linear-probing (L), where the
feature extractors are frozen and only the linear classifiers of the pre-trained models are tuned, and full fine-tuning (F), where all parameters
are trainable. Learning rates are indicated as (L / F). “M” denotes millions, and “1e-3” represents 1× 10−3.

Model Modality DVM CAD & Infarction
I T #Params (train/test) learning rate #Params (train/test) learning rate

(a) Supervised Methods
ResNet-50 [9]

√
24.1M / 24.1M 3e-4 23.5M / 23.5M 1e-3

DAFT [18]
√ √

26.0M / 26.0M 3e-4 25.4M / 25.4M 3e-3
IF [6]

√ √
26.9M / 26.9M 3e-4 26.3M / 26.3M 3e-3

TIP [5] w/o SSL
√ √

54.2M / 54.2M 3e-4 54.1M / 54.1M 3e-3
(b) SSL Pre-training Methods (L / F)

SimCLR [3]
√

28.0M / 24.1M 1e-3 / 1e-4 28.0M / 23.5M 1e-3 / 1e-3
BYOL [7]

√
70.1M / 24.1M 1e-3 / 1e-4 70.1M / 23.5M 1e-3 / 1e-4

SCARF [1]
√

0.6M / 0.4M 1e-4 / 1e-4 0.7M / 0.3M 1e-3 / 1e-3
SAINT [13]

√
6.5M / 6.5M 1e-4 / 1e-5 99.1M / 99.1M 1e-3 / 1e-5

MMCL [8]
√ √

36.8M / 24.1M 1e-3 / 1e-3 36.9M / 23.5M 1e-3 / 1e-3
TIP [5]

√ √
58.8M / 54.2M 1e-4 / 1e-4 58.9M / 54.1M 1e-3 / 1e-4

(c) SemiSL Methods
CoMatch [12]

√
28.6M / 24.1M 1e-4 28.0M / 23.5M 1e-3

SimMatch [20]
√

28.6M / 24.1M 1e-4 28.0M / 23.5M 1e-3
FreeMatch [17]

√
28.6M / 24.1M 1e-4 28.0M / 23.5M 1e-3

CoMatchM
√ √

38.1M / 37.5M 1e-4 37.8M / 37.3M 1e-3
SimMatchM

√ √
38.1M / 37.5M 1e-4 37.8M / 37.3M 1e-3

FreeMatchM
√ √

38.1M / 37.5M 1e-4 37.8M / 37.3M 1e-3
Co-training [2]

√ √
38.1M /38.1M 1e-4 37.4M / 37.4M 1e-3

MMatch [15]
√ √

38.1M / 38.1M 1e-4 37.4M / 37.4M 1e-3
Self-KD [16]

√ √
44.0M / 44.0M 1e-4 43.6M / 43.6M 1e-3

STiL
√ √

46.7M / 43.0M 1e-4 46.2M / 42.0M 1e-3

The temperature parameter was set to 0.1, and the EMA
momentum to 0.996. The batch sizes for the labeled and
unlabeled data were the same as those used in STiL.
FreeMatchM : This model is an extension of FreeMatch to
the multimodal image-tabular setting. Its hyper-parameters
were the same as those used in FreeMatch.
Co-training [2]: We adapt this co-pseudo-labeling based
method to the multimodal image-tabular domain. The pre-
dictions from the image classifier serve as the pseudo-labels
for the tabular classifier, and vice versa. Then a multimodal
classifier trained on labeled data is used for classification.
The weight factors for the labeled and unlabeled classifica-
tion losses, i.e., α and λu, as well as the EMA momentum,
were the same as those used in STiL.
MMatch [15]: In MMatch, predictions from a multimodal
classifier are used as pseudo-labels for training unimodal
classifiers. In addition, similar to CoMatch, MMatch re-
fines the pseudo-labels by aggregating label information
from nearby samples in the embedding space. Following
the original paper, we set the smoothness parameter to 0.9,
and the embedding memory bank size to 640. Based on
validation performance, the weight factor for the unlabeled
classification loss was set to 0.2.
Self-KD [16]: This method is based on co-pseudo-labeling

and cross-modal consistency regularization. In Self-KD,
a multimodal classifier serves as the teacher for unimodal
classifiers, transferring knowledge to them through pseudo-
labeling. Meanwhile, the average ensemble of unimodal
classifiers is used as the pseudo-label for training the mul-
timodal classifier. Following the original paper, we set the
weight factors for the knowledge distillation loss, the con-
trastive loss, and the L1-norm regularization term, i.e., γ, δ,
and η, to 0.6, 1, and 0.1, respectively.

The learning rate and the number of parameters for each
algorithm are summarized in Tab. S3. We used the Adam
optimizer [11] without weight decay and deployed all mod-
els on 2 A5000 GPUs. To mitigate overfitting, similar
to [5, 8], we employed an early stopping strategy in Py-
torch Lightning, with a minimal delta (divergence thresh-
old) of 0.0001, a maximal number of epochs of 500, and a
patience (stopping threshold) of 100 epochs. We ensured
that all methods had converged under this training configu-
ration.

C. Additional Experiment

Experiments with a Finer Grid of Label Percentage: In
Tab. 2 and Tab. 3 of the manuscript, we compared STiL
with SOTA SemiSL methods using experiments with 1%



Figure S1. (a) Results comparing SSL and SemiSL multimodal SOTAs with STiL using a finer grid of label percentage. (b) Results of
SemiSL multimodal SOTAs and STiL using different tabular encoders.

Figure S2. Sample ratios for each case in CGPL during training.
The model is trained on 1% labeled DVM.

and 10% labeled samples. To provide a more detailed anal-
ysis, we further conducted experiments on DVM with addi-
tional label percentages of 5%, 20%, and 100%, as shown
in Fig. S1(a). The results demonstrate that STiL consis-
tently outperforms SOTA SSL/SemiSL methods across dif-
ferent label percentages.

Applicability to Different Tabular Encoders: To demon-
strate the general applicability of STiL, we evaluated its
performance with different tabular encoders. Specifi-
cally, we replaced TIP’s pre-trained tabular encoder with
SAINT [13]’s pre-trained tabular encoder. As shown
in Fig. S1(b), all SemiSL approaches exhibit performance
drops when using SAINT’s encoder, indicating that TIP
is a more powerful tabular encoder than SAINT, as also
noted in TIP’s paper [5]. However, while Self-KD and
Co-training experience a significant performance decrease,
STiL remains more stable and continues to achieve the best
performance, demonstrating its robustness across different
tabular encoders.

Sample Ratios for Different Cases in CGPL: As men-
tioned in Sec 3.3 of the manuscript, CGPL categorizes sam-
ples into 4 cases based on classifier consensus: (1) Case 1:
all classifiers agree; (2) Case 2i: fm and f i agree; (3) Case
2t: fm and f t agree; and (4) Case 3: none of the above. To
assess the efficacy of CGPL, we visualize the changes in the
ratios of the samples belonging to each case during training.
As shown in Fig. S2, the sample ratios for both case 2i and
case 2t initially increase during the initial training stage but
later decrease and stabilize at a lower bound. On the other
hand, the sample ratio of Case 1 gradually increases and ap-
proaches an upper bound. These observations demonstrate
that: (1) CGPL facilitates collaboration among classifiers,
enabling them to learn from each other and improving clas-
sifier agreement; (2) due to the Information Modality Gap,
unimodal classifiers, which rely solely on a single modality,
lack comprehensive task knowledge and fail to align with
the multimodal classifier on certain challenging multimodal
cases; and (3) CGPL effectively generates pseudo-labels
through classifiers’ consensus collaboration while allowing
classifier diversity, which helps reduce the risk of classifier
collusion.

Class-wise Accuracy in DVM: DVM has 283 classes, each
with a varying number of labeled training samples. To in-
vestigate the impact of imbalanced data on STiL and other
comparing algorithms, we visualize their class-wise accu-
racy for both majority classes (those with more training
samples) and minority classes (those with fewer training
samples). Specifically, we ranked the classes based on their
number of labeled training samples and displayed the class-
wise accuracy for the top 16 majority classes and the bottom
16 minority classes. As shown in Fig. S3, supervised meth-
ods exhibit low accuracy across different classes, indicating
their limited capacity when trained with a few labeled data.
Though TIP, the SSL pre-training framework, performs well
on majority classes, its accuracy significantly decreases on
some minority classes. This suggests that relying solely on



Figure S3. Class-wise accuracy comparing STiL and other methods trained on 1% labeled DVM. The top 16 majority classes are shown in
the grey region, while the bottom 16 minority classes are shown in the white region. TIP⊘ represents TIP w/o SSL pre-training.

✘ ResNet: 0.0045
✘ SimCLR: 0.0093
✓︎ TIP⊘: 0.5091
✓︎ TIP: 0.7472
✓︎ Self-KD: 0.9437
✓︎ STiL: 0.9958

✘ ResNet: 0.0030
✘ SimCLR: 0.0016
✘ TIP⊘: 0.0033
✓︎ TIP: 0.3160
✓︎ Self-KD: 0.8650
✓︎ STiL: 0.9982

✘ ResNet: 0.0030
✘ SimCLR: 0.0981
✘ TIP⊘: 0.0314
✓︎ TIP: 0.5017
✓︎ Self-KD: 0.6002
✓︎ STiL: 0.7659

✘ ResNet: 0.0040
✘ SimCLR: 0.0004
✓︎ TIP⊘: 0.6585
✓︎ TIP: 0.8691
✓︎ Self-KD: 0.9351
✓︎ STiL: 0.9995

Label = 209 (1 labeled sample)
✘ ResNet: 0.0019
✘ SimCLR: 0.0007
✘ TIP⊘: 0.0122
✘ TIP: 0.0417
✓︎ Self-KD: 0.4675
✓︎ STiL: 0.9754

Label = 183 (2 labeled samples)
✘ ResNet: 0.0029
✘ SimCLR: 0.0004
✘ TIP⊘: 0.0034
✘ TIP: 0.0339
✓︎ Self-KD: 0.91089
✓︎ STiL: 0.9868

Label = 194 (3 labeled samples)
✘ ResNet: 0.0042
✘ SimCLR: 0.0010
✘ TIP⊘: 0.0362
✘ TIP: 0.1610
✓︎ Self-KD: 0.5018
✓︎ STiL: 0.7719

Label = 84 (3 labeled samples)
✘ ResNet: 0.0032
✘ SimCLR: 0.0016
✘ TIP⊘: 0.0138
✘ TIP: 0.1031
✓︎ Self-KD: 0.6900
✓︎ STiL: 0.8363

(a) Limited image information

(b) Very limited labeled training samples for minority classes

Figure S4. DVM car visualization of challenging samples and the ground-truth class predictions for STiL and other models trained on 1%
labeled DVM. (a) Samples with limited image information, where the views of cars are restricted due to shooting angles (compared to the
samples shown in (b)); (b) Samples from minority classes. × indicates the model predicts a wrong class, while

√
indicates the model

predicts the correct class.

a small amount of labeled data during fine-tuning is inef-
fective, especially for minority classes. In contrast, STiL
mitigates these issues by leveraging labeled and unlabeled
data jointly, achieving overall better results. In addition, we
observe that all models perform poorly on class 233, which
can be attributed to the very limited labeled data (only 1
training sample) and the inherent difficulty in classifying
this class.
Case Study: We visualize several challenging examples
where STiL outperforms previous SOTAs. The results show
that (1) a single image modality is insufficient to solve the
classification task (the failure of ResNet and SimCLR in
Fig. S4(a)) and (2) minority classes with very limited la-
beled training samples pose challenges for SSL algorithms
(the failure of TIP in Fig. S4(b)). However, STiL enables

the model to comprehensively explore task-relevant infor-
mation from both labeled and unlabeled data, leading to im-
proved performance on these challenging samples.
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