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Supplementary Material

The Supplementary Material is organized as follows:

• Section 1 includes extended related works, which mainly
discuss the relation between synthetic and real data.

• Section 2 introduces more temporal distribution visu-
alizations in ActivityNet Captions and Charades-STA
(§ 2.1), and presents the metric TJSD details (§ 2.2).

• Section 3 contains detailed component spaces (§ 3.1),
commonsense activity graph rules, and re-weighting sam-
pling strategy on the graph(§ 3.2), template-based and
GPT-based sentence generation (§ 3.3), ICGF details and
its comparison with other methods (§ 3.4), and more
statistics and visualizations of SVLTA (§ 3.5).

• Section 4 outlines model implementation details (§ 4.1),
RC metric and the statistics of different temporal bias data
in the Distributional Shift Sensitiveness task(§ 4.2), and
the further analysis of VidLLMs(§ 4.3).

• Section 5 provides some data examples from the SVLTA.

1. Extend related works

In this section, we mainly discuss the relationship between
synthetic and real-world data. Both of them are valuable
and they are complementary to achieve different goals. The
real-world data has real appearances and scenarios and can
well evaluate the model’s ability to be applied in the real
world, dominating the current benchmarks, such as Ima-
geNet [4] and Kinetics [1]. Additionally, the model trained
on the large-scale real-world benchmark usually has strong
robustness and generalization [14, 35], which can be trans-
ferred to multiple scenarios due to the diverse semantics and
appearances. However, with the emergence of large lan-
guage models [5, 15, 40, 41] and more and more simula-
tors [20, 33, 42], synthetic data with high-quality annota-
tions and controllable elements is gradually gaining popu-
larity, which can provide rigorous or fair diagnostic evalu-
ations or benchmarks and also shown in the existing work
like CLEVR [12] or CATER [8]. These synthetic bench-
marks mainly provide a diagnostic framework for various
tasks (e.g. understanding [39], reasoning [24, 46], and
recognition or detection [7, 34, 43]), which often reveal the
drawbacks of current models and facilitate some insightful
conclusions for the community. The aforementioned syn-
thetic datasets are not designed to study vision-language
temporal alignment and ignore the explicit control of tem-
poral alignment as the primary generation objective, which
is different from our proposed SVLTA benchmark.

2. More Temporal Distribution Analysis
2.1. Temporal Distribution Visualizations
Here, we provide more temporal distribution visualizations
related to the process (Figure 1), composition (Figure 2),
and entity (Figure 3 and 4) in ActivityNet Captions (AN-
Caps) [16] and Charades-STA [6]. These distributions are
acquired by kernel density estimation with the Gaussian
kernel, consistent with previous works [28, 47, 49]. The
color darkness represents the sample density, and the hori-
zontal and vertical axes represent the normalized start and
end time points respectively. We can observe that these dis-
tributions are not uniform, i.e., some temporal annotations
have a high-frequency occurrence at the beginning or end
of the video. We analyze the current benchmarks and de-
rive two reasons for this unbalanced phenomenon: 1) ac-
tions cannot be guaranteed to happen in arbitrary positions
in the video, and 2) human annotators overlook some of the
actions in the video and do not label them. The above vi-
sualization implies that the current mainstream benchmarks
are subject to multi-level temporal biases, spanning from
global to local perspectives.

2.2. TJSD Metric
TJSD metric is proposed to measure the temporal bias by
computing the difference between the target temporal dis-
tribution and the uniform distribution. Specifically, we first
divide the video into n equal moments to discretize time,
leading to n(n+1)

2 different bins, each bin means a tempo-
ral class, and then we assign the timestamps into these bins.
Therefore, the target distribution can be represented by the
number of samples in these bins and the uniform distribu-
tion means that the number of samples in each bin is the
same, both of them are divided by all the samples in the
dataset to be normalized. Finally, the Jensen–Shannon di-
vergence calculates the difference between the above two
distributions. The TJSD is formulated as follows:
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Where P and U denote the target temporal logits and uni-
form logits with n(n+1)

2 elements. Ni and N refer to the
number of samples in the i-th bin and in all bins, respec-
tively. We use the whole temporal annotations in the dataset



Figure 1. Temporal Distributions of the whole temporal annotations. The right
column is AN-Caps, and the left column is Charades-STA.

Figure 2. Temporal Distributions of Top3 actions. The top row is AN-Caps,
and the bottom row is Charades-STA.

to compute the process temporal bias. For the entities or
composition temporal bias, we first extract the verb (or ob-
ject or action) and then utilize their corresponding temporal
annotations to calculate the temporal bias separately. The
smaller the value, the less temporal bias of the dataset.

3. Benchmark Details
3.1. Detailed Situation Component Spaces
We define 10 verbs and 34 objects to compose 96 di-
verse meaningful actions. The concept of compositional ac-
tions has already been proposed in previous works [8, 36],
which is different from the verb-only actions that only focus
on standalone activities without objects, such as walking
or running, often seen in early action recognition bench-
marks [17]. The compositional action introduces more
complex interactions by combining different verbs with dif-
ferent objects, creating distinct actions with unique seman-
tic meanings (such as open fridge, open microwave, and

Figure 3. Temporal Distributions of Top3 verbs. The top row is AN-Caps, and
the bottom row is Charades-STA.

Figure 4. Temporal Distributions of Top3 objects. The top row is AN-Caps,
and the bottom row is Charades-STA.

grab milk). For instance, walking to a bed and walking to a
sofa may share the core verb walk, but they differ in terms of
the object involved. In the vision-language temporal align-
ment, this is not only relevant to verb-only actions but also
adds layers of semantic context that are crucial for the eval-
uations in vision-language temporal alignment tasks. We
also manually check whether each action can be executed
by the VirtualHome simulator [22, 31, 32] and determine
the scenes and characters in which each action can be per-
formed. All actions and objects are quite distinct in motion
and shape. Figure 5 (a) shows the detailed verb, object,
and action lists. We can see that these actions often occur in
daily life, like open fridge, switch on tv, grab plate, etc. Fig-
ure 5 (b) and (c) illustrate the detailed agents and situations,
which are the same in the original VirtualHome.

3.2. Commonsense Activity Graph
Activity Commonsense VirtualHome provides the basic
rules between paired actions, i.e., some actions must wait
until the conditional actions are completed before they can
happen. However, it would have some unreasonable com-



(a) Detailed Verbs, Objects, Actions

(b) Detailed Agents

Female001 Female002

(c) Detailed Situations

Female004 Male001 Male002 Male006

Room001 Room002 Room003 Room004

Room005 Room006 Room007

Figure 5. Detailed Verbs, Objects, Actions, Agents, and Situations in the SVLTA.

positions for longer action sequences when directly using
these rules to sample the actions from the component space.
To address this problem, a commonsense activity graph is
developed. Specifically, we first manually check these rules
and filter some unreasonable rules (cannot be executed) in
some situations and agents to ensure that they are consis-
tent with the normal commonsense in our lives, as shown
in Table 1. Based on these filtered rules, we can obtain a
whole activity-directed graph for all our compositional ac-
tions. Then, a graph traversal algorithm like DFS or BFS
is utilized to traverse action nodes in activity graphs with
given lengths to obtain the logical action chains.
Re-weighting Sampling Since different actions have dif-
ferent constraints in the activity graph, e.g., action walk to
sth does not need to wait for other actions to happen while
action close sth must wait for action open sth to happen be-
fore it can occur, which causes the degree of action node to
be imbalanced in the activity graph and reduce the diversity
of action compositions when directly traversing the graph.
To solve this problem, a re-weighting sampling strategy is
proposed to ensure that all candidate actions have a uniform
probability of being selected in each traversal. In detail, the
re-weighting ratios are based on the degree of the action
nodes, if the action node has a high degree, then we would
give it a small value, and vice versa.

3.3. Language Sentence Generation
Template-based Generation We introduce three templates
to convert each action in activity manuscripts into sentences
directly, which is illustrated in Table 2. The definition
of these templates depends on whether the scenes would
change when the action occurs. Specifically, for the action
that does not cross the room, i.e., the scene remains un-

changed, the template is The <character> + <action> +
in the + <room> + in the + <scene>. If the action crosses
the room, it still has two cases, i.e., for the action walk to
sth, its template is The <character> + walk through the
door from + <original room> + to + <current room>
+ and + <action> + in the + <current room> + in the
+ <scene>, for the action run to sth, the template is The
<character> + run through the door + <original room>
+ to + <current room> + in the + <scene>. The reason
why these two action templates are different is that the ac-
tion run to sth does not associate with some objects, but
the action walk to sth needs to interact with some objects.
Utilizing the above template to generate the language sen-
tence would reduce the ambiguity and noise problems in the
dataset, which can improve the benchmark quality.
GPT-based Generation Large Language Models (LLMs)
achieve excellent results in the natural language generation
area, so we also use the ChatGPT(GPT-3.5-turbo) [27] to
rewrite the original template-based sentences into more nat-
ural and diverse descriptions to strengthen our benchmark.
The detailed prompt is shown in Figure 6.

3.4. Inequality Constrained Global Filtering
In this section, we provide more details about our Inequal-
ity Constrained Global Filtering (ICGF) method. The ICGF
is a global-level debiasing method since the two strategies
ADD and AP control the temporal biases in each logical ac-
tion chain from a local perspective and may produce poten-
tial temporal biases from a global perspective. The main
idea of ICGF is to filter some samples to obtain a more
balanced temporal distribution while not filtering too many
samples. Specifically, we treat this idea as a nonlinear opti-
mization problem with inequality constraints, the optimiza-



Table 1. The activity commonsense in the VirtualHome. Pre-
action: completed action. Post-action: pending action. Condition:
The condition under which the post-action can happen if the pre-
action has already occurred. oi ! = oj : cannot be the same object.
oi == oj : must be the same object. —: do not have relation.

Pre-action Post-action Condition

walk to oi

walk to oj oi ! = oj
run to oj oi ! = oj
open oj oi == oj
grab oj oi == oj

switch on oj oi == oj
sit on oj oi == oj
close oj oi == oj

switch off oj oi == oj
drink oj —

put oj1 on oj2 oi == oj2
put oj1 in oj2 oi == oj2

run to oi

run to oj oi ! = oj
walk to oj oi ! = oj
drink to oj —

open oi

close oj oi == oj
walk to oj oi ! = oj
run to oj oi ! = oj
drink oj oi ! = oj

put oj1 in oj2 oi == oj2

grab oi

drink oj oi == oj
walk to oj oi ! = oj
run to oj oi ! = oj

put oj1 in oj2 oi == oj1

switch on oi

switch off oj oi == oj
walk to oj oi ! = oj
run to oj oi ! = oj
drink oJ —

sit on oi stand up —

close oi

walk to oj oi ! = oj
run to oj oi ! = oj
drink oJ —

drink oi
walk to oj oi ! = oj
run to oj oi ! = oj

switch off oi
walk to oj oi ! = oj
run to oj oi ! = oj
drink oj —

stand up
walk to oj —
run to oj —
drink oj —

put oi1 in oi2

walk to oj oi2 ! = oj and oi1 ! = oj
run to oj oi2 ! = oj and oi1 ! = oj
drink oj oi2 ! = oj and oi1 ! = oj
close oj oi2 == oj

put oi1 on oi2

walk to oj oi2 ! = oj and oi1 ! = oj
run to oj oi2 ! = oj and oi1 ! = oj
drink oj oi2 ! = oj and oi1 ! = oj

tion goal is to reduce the gap between the current distribu-
tion and the uniform distribution and the constraint is that
too many samples should not be filtered. Here, we use an
absolute deviation function to measure the distribution gap,
and a filtering rate is utilized to control the sample size,
which can be formulated as follows:

min
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j
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Where Ni means the sample numbers of i-th action, and
Nij , αij denotes the sample numbers and the sampling rate
in j-th temporal class of i-th action. The first term of the
above objective function means we want the temporal dis-
tribution can be as balanced as possible for the i-th action,
an absolute deviation function is utilized to quantify the dif-
ference between the target distribution and uniform distribu-
tion, and the second term indicates the number of samples
in the i-th action after sampling. Therefore, the objective
function demonstrates that we want to balance the tempo-
ral distribution of i-th action and retain more samples after
sampling. The restrictions mean the sampling rate should
be between [0, 1], and the number of samples after sam-
pling cannot be lower than the initialization sample number
Ni with a certain ratio γ. The β and γ are hyper-parameters
with 1e−5 and 0.6 in our method, respectively. To solve the
aforementioned optimization problem, we employ Sequen-
tial Quadratic Programming using the SciPy tool [44].

In addition, we also compare the Adversarial Filtering
(AF) method [18, 38] with our ICGF, and the results are
shown in Table 3. It indicates that the ICGF has a better
debiasing effect than the AF, i.e., it can make the dataset
obtain the lower three types of temporal bias and achieve
more balanced distributions, which demonstrates that ICGF
can find the optimal solution in a global iteration, unlike AF
which can only get sub-optimal in each iteration.

3.5. Dataset Statistics and Visualizations
Vocabulary Distribution The count distributions of verbs,
objects, and actions are shown in Figure 7. In Figure 7 (b)
and (c), the histograms refer to the count of verbs and ob-
jects in the SVLTA, which can be seen that the highest fre-
quent verbs and objects are walk, grab, open, fridge, mi-
crowave, sofa, etc. These verbs and objects compose ac-
tions, which are shown in Figure 7 (a) and (d). It can rep-
resent the most popular actions in the SVLTA, which are
walk to fridge, walk to microwave, run to livingroom, open
fridge, stand up, and sit on sofa, etc. Note: our goal is to
construct a benchmark with uniform temporal distribution,
so their count distributions are not restricted and the count
distributions do not affect models’ visual-language tempo-
ral alignment ability, as mentioned in [28].
Temporal Distribution Here, we also visualize the verb-
level, object-level, and action-level temporal distributions in
the SVLTA, as shown in Figure 8, 9, and 10. For verb-level
and object-level distributions, we depict the Top3 verbs and



Table 2. Three detailed sentence templates for sentence generation. Suppose we select agent Female1 and situation scene0 to generate the
synthetic video.

Condition Template Action Example

action occurs not
across the room

The <agent> + <action>
+ in the + <room> + in the + <scene>.

open fridge
(in the livingroom)

The Female1 opens fridge
in the livingroom in the scene0.

action walk to sth
occurs across the room

The <agent> + walks through the
door from + <original room> + to

+ <current room> + and + <action> +
in the + <current room> + in

the + <scene>.

walk to cabinet
(from bedroom to

kitchen)

The Female1 walks through the
door from bedroom to kitchen

and walks to cabinet in the
kitchen in the scene0.

action run to sth
occurs across the room

The <agent> + runs through
the door + <original room> + to

+ <current room> + in the + <scene>.

run to bathroom
(from kitchen to

bathroom)

The Female1 runs through the
door from kitchen to

bathroom in the scene0.

Role: system
Content: You are a rewriting expert, your task is to improve the clarity, naturalness, and conciseness of 
the sentence. This will involve assessing the existing content, identifying areas that can be simplified or 
clarified, and restructuring sentences where necessary. Make sure you maintain the original meaning 
while reducing verbosity and ensuring the text is easy to understand. The final product should be a clear, 
concise, and coherent version of the original text.
Role: user
Content: Now, I will give you a sentence: <SENTENCE>, then you should rewrite it and keep the 
clarity, naturalness, and conciseness of the sentence. In addition, please use the present tense.

Figure 6. The prompt used in the GPT-3.5-turbo.

Table 3. The comparison between ICGF and AF.

Entity

Benchmark Process Verb Object Composition

SVLTA (raw) 0.127 0.306 0.152 0.343

SVLTA (w/ AF) 0.107 0.302 0.145 0.358
SVLTA (w/ ICGF) 0.073 0.266 0.101 0.322

objects in the SVLTA, for action-level distribution, Top6 ac-
tions are illustrated. Most of these distributions look flatter
and have a small variance, demonstrating the validity of our
controllable strategies and constrained filtering methods.

Action Duration Distribution Due to the Action Duration
Diversity (ADD) strategy being used to balance the tem-
poral distribution in the dataset, there are up to 7 different
action framerates for each action in the SVLTA to make the
action duration diverse. Figure 11 illustrates the action du-
ration and frame rate distributions in the SVLTA. We can
observe that 1) the action durations are diverse, there are
27.69% short-term actions, 44.43% middle-term actions,
19.63% long-term actions, and 8.25% very long-term ac-
tions and 2) the framerates are also diverse, it goes from 3 to

25, the lower the frame rate, the slower the action. Note: we
post-process the video that contains different frame rates by
sampling based on the minimum frame rate in each video,
to keep the frame rate the same within a video.

4. Experiment Details

4.1. Model Implementation Details
Video Large Language Models The SVLTA has nearly
77.1K temporal annotations, directly evaluating Video
Large Language Models (VidLLMs) on the whole dataset
would cause redundancy. Therefore, we sample 13K+ an-
notations from the original SVLTA to compose the SVLTA-
VLLM dataset, which contains all actions in the SVLTA and
is consistent with the dataset size of mainstream multimodal
evaluation benchmarks [19, 48]. Here, we employ the de-
fault configuration as those utilized in their original papers,
except the LLaVA-Video [50], due to the GPU memory lim-
its. We use the 16 frames rather than the 64 frames men-
tioned in the original paper. For the question prompts, due
to the VTimeLLM [11] being fine-tuned on various frame-
formatted instruction datasets, we ask their model to return
the answer through frame numbers, for the other VidLLMs,



(a) Word cloud for actions in the SVLTA. (b) The verbs statistics in the SVLTA.

(c) The objects statistics in the SVLTA. (d) The actions statistics in the SVLTA.

Figure 7. The distribution of the vocabulary in the SVLTA.

Figure 8. Temporal Distributions of Beginning and Ending Times
of Top3 Verbs in SVLTA. Left is the start time and Right is the end
time. All the times are normalized by video length.

Figure 9. Temporal Distributions of Beginning and Ending Times
of Top3 Objects in SVLTA. Left is the start time and Right is the
end time. All the times are normalized by video length.



Figure 10. Temporal Distributions of Beginning and Ending Times of Top6 Actions in SVLTA. Left is the start time and Right is the end
time. All the times are normalized by video length.

we ask the model returning the seconds, as shown in Fig-
ure 12. Additionally, we only use the 7B version of these
models at the FP16 or BF16 precision. All experiments are
conducted on a single RTX 3090 GPU with 24GB memory.

Specific Visual-Language Temporal Alignment Models
All of the models we selected keep the same training set-
tings of Charades-STA as mentioned in their original pa-

pers. For video feature extraction, we first resize the
frames into 112× 112 resolution and then use a pre-trained
3D ResNexT-101 [10] (on Kinetics-700 [2]) to extract the
2048-dimensional features. All sentences are represented
by 300-dimensional pre-trained GolVe [30] word embed-
ding. We conduct all experiments on a single RTX 2080 Ti
GPU with 11GB memory.



(a) Action duration statistics (b) Frame rate statistics

Figure 11. The distribution of action duration in the SVLTA.

4.2. RC Metric

We introduce the RC metric to evaluate the ability of the dis-
tributional shift sensitiveness. Two test sets are constructed
through different sampling strategies in our experimental
setting, one has a high temporal bias, and the other has a
low temporal bias. RC is the difference between the results
of the two test sets when training on the high temporal bias
data to assess whether the model is affected by temporal
distribution shift, which can be formulated as follows:

RC =

∑
k

∣∣∣rklow − rkhigh

∣∣∣
k

(3)

Where k means different metrics to measure the mod-
els’ performance, the k is 5, including the R@1, IoU =
0.3, 0.5, 0.7, 0.9, and the mIoU. rklow and rkhigh are the re-
sults of low-biased and high-biased test sets.

Moreover, we also give the statistics of the high tempo-
ral bias dataset and low-biased test set in the Distributional
Shift Sensitiveness task, as shown in Table 4 and 5. The
high-biased dataset is split into training/validation/test sets
with a ratio of about 6:2:2.

Table 4. The size of two datasets.

Dataset # Training # Validation # Test

High-Biased 56679 12212 12666
Low-Biased — — 11988

Table 5. The temporal bias of two datasets.

Entity

Dataset Process Verb Object Composition

High-Biased 0.331 0.610 0.469 0.683
Low-Biased 0.030 0.167 0.051 0.248

Table 6. Analysis on action recognition accuracy (%) in SVLTA.

Method Acc.

Video-LLaVA [23] 71.06
Video-LLaMA2 [3] 77.94

4.3. Further Analysis of VidLLMs
Visual domain gap Although synthetic videos feature sim-
pler visual appearances, their visual difference from real
videos does not cause serious domain effects on most video
models. To illustrate this, we conducted action recognition
experiments with VidLLMs on our SVLTA. The results in
Table 6 demonstrate that these models trained on real videos
still perform strongly in visual perception within the syn-
thetic domain. This means that the visual domain gap in the
SVLTA has fewer effects on the temporal alignment.
The number of frames We also evaluate the effect of
frame numbers in our SVLTA and take time-aware VidLLM
TimeChat as an example. We consider three different frame
numbers: 96 (default setting), 128, and 256. The results are
in Table 8, demonstrating that frame numbers have little im-



Role: system
Content: You are able to understand the visual content that the user provides. Follow the instructions carefully and explain your 
answers in detail.
Role: user
Content: 
Here is an illustrative example:
=== example start ===
You are given a video from a new synthetic dataset. Please find the visual event described by a sentence in the video, determining its 
starting and ending times. The format should be: 'The event happens at the start time-end time'. For example, The event 'person turns 
a light on' happens in the 24.3 - 30.4 seconds. Now I will give you the textual sentence: <SENTENCE> and the video length is 
<VIDEO_DURATION> seconds with total <TOTAL_FRAMES> frames and its frame rate is <FRAME_RATE>. Please return its 
start and end times. Note that the start time must be more than 0 second and the end time must be less than the video length.
=== example end ===
Now I will give you the textual sentence: <SENTENCE>. Please return its start time and end time.

Role: system
Content: You are able to understand the visual content that the user provides. Follow the instructions carefully and explain your 
answers in detail.
Role: user
Content: 
Here is an illustrative example:
=== example start ===
You are given a video from a new synthetic dataset. Please find the visual event described by a sentence in the video, determining its 
starting and ending frames. The format should be: 'The event happens from the start frame to the end frame'. For example, The event 
'person turns a light on' happens from the 160th frame - the 200th frame. Now I will give you the textual sentence: <SENTENCE> 
and the video has total <TOTAL_FRAMES> frames with <VIDEO_DURATION> seconds and its frame rate is <FRAME_RATE>. 
Please return its start and end frames. Note that the start frame must be more than 0 frame and the end frame must be less than the 
video's total frames and both of them need to be integer type.
=== example end ===
Now I will give you the textual sentence: <SENTENCE>. Please return its start frame and end frame.

(a): Question prompt that returns the seconds

(b): Question prompt that returns the frame numbers

Figure 12. The temporal-related question prompts utilized in the VidLLMs.

pact on the temporal alignment results and the model equips
weak extrapolation ability.

More VidLLMs Evaluations Here, we provide additional
two VidLLMs evaluations on our SVLTA, namely the exist-
ing popular general VidLLM Qwen2-VL [45] and the lat-
est time-aware VidLLM TRACE [9]. For the Qwen2-VL,
due to the GPU memory limitations, we configure the max
frame length as 150. The results are shown in Table 7. Al-
though the TRACE obtains the highest mIoU of 23.69, it
still does not achieve satisfactory performance, indicating
current VidLLMs lack temporal alignment capabilities.

Analysis of performance comparison We can notice
that distinct VidLLMs have various performances on our
SVLTA. The reason is that these models utilize differ-
ent training data, training objectives, vision encoders, and
LLMs. For example, Video-LLaVA [23] uses a 765K

mixed dataset of images and videos in the instruction tuning
stage, while the LLaVA-Video [50] utilizes a 178K dataset
of pure videos in the instruction tuning stage. We adopt
the settings recommended by the original VidLLM papers,
which demonstrate the best capability in their respective
benchmarks. We assume that these settings can achieve
optimal performance in our SVLTA. Additionally, we ob-
serve that current VidLLMs perform poorly on our SVLTA.
There are two reasons for this phenomenon: (1) current
VidLLMs generally lack temporal understanding ability, al-
ready pointed out by previous works [13, 25, 29], our find-
ing is consistent with these works; (2) SVLTA is a fair
benchmark with unbiased temporal distribution, it is diffi-
cult for the current VidLLMs to use the temporal biases as
the shortcut to predict the results, which is the main reason.

Detailed question prompts We consider two cases in the



Table 7. More VidLLMs evaluations on the SVLTA.

R@1

Method # Frames Size LLM IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.7 mIoU

Qwen2-VL [45] 1FPS 7B Qwen2 19.37 11.31 5.63 2.19 7.89
TRACE [9] 64 7B Mistral-7B 52.36 34.51 19.62 9.07 23.69

Table 8. Frame numbers analysis in the SVLTA.

R@1

Method # Frames IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.7 mIoU

TimeChat-7B [37]
96 23.29 13.58 6.96 3.25 9.61
128 24.09 13.85 7.28 3.46 10.00
256 22.10 11.73 5.61 2.56 8.55

VidLLMs, one is asked to return seconds, and the other is
requested to return frame numbers. The detailed question
prompts are illustrated in Figure 12.
Some Qualitative Examples of VidLLMs We provide
some outputs of VidLLMs in the Temporal Question An-
swering task, as shown in Figure 13, 14, 15, and 16. We find
that LLaVA-Video [50] and Videochat2 [21] often return ir-
relevant answers to the questions and generate redundancy
descriptions, which means their instruction-following abil-
ity is not good. Additionally, we observe that Video-
LLaVA [23] and Video-ChatGPT [26] prefer to copy the
result from the example of the question prompt, demon-
strating that they may not understand the temporal align-
ment and learn some hidden shortcuts. And most of these
VidLLMs give the wrong answers, which indicates current
VidLLMs lack temporal alignment ability and our bench-
mark is challenging for these VidLLMs in temporal under-
standing. We hope this benchmark can provide some insight
into how to design time-aware VidLLMs in the community.

5. Dataset Examples
We also provide several examples of the SVLTA bench-
mark in Figure 17 and 18. Each example consists of syn-
thetic video and language with high-quality timestamp an-
notation.



Video

The female grabs the waterglass in the bathroom.Language

46.7s32.2s

Temporal 
Alignment

Sentence: The female grabs the waterglass in the bathroom.

LLaVA-Video: The video begins with a person standing in a modern, black and red room. The person is wearing a red and black patterned dress and red shoes. 
They are facing a white desk with a computer monitor on it. To the right of the desk, there is a red office chair. The floor is tiled in black and white, and there is a 
red circular rug on the floor. The walls are black with a floral pattern. The person turns around and walks towards a door on the left side of the room. They open 
the door and enter another room.\n\nThe second room has dark blue walls with a floral pattern and white tiles on the floor. There is a painting on the wall to the 
left of the door, and a green cushion on the floor next to a black bench. The person walks further into the room and then turns right, walking towards a shelf with 
various items on it. The shelf is against the wall, and there is a door next to it. The person continues walking until they reach the end of the room, where there is a 
bathroom.\n\nThe bathroom has blue tiles on the walls and floor. There is a white sink with a mirror above it, and a washing machine to the left of the sink. The 
person approaches the sink and looks at the items on it, which include a toothbrush, toothpaste, and a cup. They pick up the cup and take a sip from it. The person 
then places the cup back on the counter and stands in front of the sink, looking at the items on it.\n\nThe video ends with the person still standing in front of the 
sink, looking at the items on it.

Videochat2: The female in the video grabs the water glass in the bathroom at the start time of 0.

Video-LLaVA: The event 'person drink water from the glass' happens in the 24.3 - 30.4 seconds.

Video-ChatGPT: The female grabs the waterglass in the bathroom at 24.3 - 30.4 seconds.

Video-LLaMA2: The event 'the female grabs the waterglass in the bathroom' happens in the 75.0 - 85.09821194664917 seconds.

Vid: 96_4_19_3_1

Figure 13. A qualitative example of different VidLLMs in the SVLTA.

Video

The female grabs the waterglass in the bathroom.Language

46.7s32.2s

Temporal 
Alignment

Sentence: The female grabs the waterglass in the bathroom.

E.T.Chat: The event happens in 0 - 5.

TimeChat: The given query happens in 15.0 - 25.0 seconds.

VTimeLLM: The event 'woman grabs water glass' happens from the 16th frame to the 32nd frame.

Gemini 1.5 Pro: The event happens at the 70.0-75.0 seconds.

GPT-4o: The event 'the female grabs the waterglass in the bathroom' happens in the 56.4 - 66.7 seconds.

Vid: 96_4_19_3_1

Figure 14. A qualitative example of different VidLLMs in the SVLTA.



Video

The male opens the fridge in the kitchen.Language

26.6s17.5s

Temporal 
Alignment

Sentence: The male opens the fridge in the kitchen.

LLaVA-Video: The video begins with a person walking into a room with blue walls and a colorful painting on the wall. The person is wearing a gray long-sleeve 
shirt, black pants, and sneakers. They walk towards a white chair and then turn to the right, revealing a kitchen area with white cabinets, a black refrigerator, and 
various kitchen appliances. The person opens the refrigerator door and looks inside.\n\nThe scene transitions to the person standing in front of the refrigerator, still 
holding the door open. They then close the refrigerator door and walk towards a dining area with a large table set with plates, utensils, and condiments. The dining 
area has a modern design with white tables and benches, and there are shelves with various items in the background. A poster on the wall reads "The 
Voice."\n\nThe person walks around the dining area, passing by the shelves and the poster. They then walk towards a door that leads to another room. The person 
opens the door and enters the new room, which appears to be a living area with a couch, a coffee table, and a television. The walls are blue, and there is a potted 
plant on a side table.\n\nThe person continues to walk through the living area, passing by the couch and the coffee table. They then turn to the left and walk 
towards a desk with a computer monitor, keyboard, and mouse. The desk is positioned against the blue wall, and there is a white chair next to it. The person stands 
in front of the desk, looking at the computer monitor.\n\nThe video concludes with the person standing in front of the desk, still holding the green carton.

Videochat2: The video is of a male opening the fridge in the kitchen and it lasts for 137.72402958305622 seconds with a total of 413 frames and a frame rate of 
3.0. The input frames are uniformly sampled from the raw video. The start time of the video should be greater than 0 seconds and the end time should be less than 
the video length.

Video-LLaVA: The event 'person turns a light on' happens in the 24.3 - 30.4 seconds.

Video-ChatGPT: The event 'person turns a light on' happens in the 24.3 - 30.4 seconds.

Vid: 43_8_12841_2_2

Figure 15. A qualitative example of different VidLLMs in the SVLTA.

Video

The male opens the fridge in the kitchen.Language

26.6s17.5s

Temporal 
Alignment

Sentence: The male opens the fridge in the kitchen.

Video-LLaMA2: The event 'the male opens the fridge in the kitchen' happens in the 10.0 - 15.0 seconds.

E.T.Chat: The event happens in 0 - 5.

TimeChat: The given query happens in 0.0 - 10.0 seconds.

VTimeLLM: The event 'person opens the fridge' happens from the 137th frame to the 200th frame.

Gemini 1.5 Pro: The event happens at the 9.6-12.8 seconds.

GPT-4o: The event 'the male opens the fridge in the kitchen' happens in the 28.0 - 32.0 seconds.

Vid: 43_8_12841_2_2

Figure 16. A qualitative example of different VidLLMs in the SVLTA.



Sentence: the Female1 walk through the door from bedroom to kitchen and walk to paper in the kitchen in the room0

Start: 0.0s End: 6.72s

Sentence: the Female2 close the fridge in the kitchen in the room

Start: 8.56s End: 10.84s

Sentence: the Male10 grab the milk in the kitchen in the room6

Start: 14.64s End: 16.72s

Sentence: the Male1 switch on the stove in the kitchen in the room6

Start: 35.12s End: 37.44s

Figure 17. Some examples from the SVLTA (Best viewed in color).



Sentence: the Male2 sit on the bed in the bedroom in the room6

Start: 11.28s End: 14.88s

Sentence: the Female4 run through the door from kitchen to bathroom in the room1

Start: 10.8s End: 16.88s

Sentence: the Male1 put the milk on the microwave in the kitchen in the room2

Start: 32.0s End: 34.08s

Sentence: the Female1 put the plate in the microwave in the kitchen in the room0

Start: 13.44s End: 15.52s

Figure 18. Some examples from the SVLTA (Best viewed in color).
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