
Shift the Lens: Environment-Aware Unsupervised Camouflaged Object

Detection

–Supplementary Material–

Ji Du1,2, Fangwei Hao1, Mingyang Yu1, Desheng Kong1

Jiesheng Wu1, Bin Wang1, Jing Xu1,∗, Ping Li2,*
1College of AI, Nankai University, China

2Department of Computing, The Hong Kong Polytechnic University, Hong Kong

Abstract

In this supplementary material, we provide additional analysis across 7 key aspects, including similarity distribution visual-

izations, generative models, SAMs, feature extractors, features from different positions, layers of DINOv2, and failure cases.

1. Similarity distribution visualizations

Our method, EASE, separates foreground and background by comparing the target to a library of environmental prototypes.

EASE generates a similarity distribution through retrieval, which typically shows a bimodal shape. The higher similarity

values correspond to the environment, while the lower values indicate camouflaged objects. Therefore, the left peak of the

distribution generally represents camouflaged objects, and the right peak represents the environment. To segment these peaks

and identify camouflaged objects, we apply adaptive thresholds using the KDE-AT method. For a clearer understanding of

our approach, please refer to Fig. 1.

2. Different generative models

At the DiffPro stage, we adopt generative models to generate prototype images of the environment. Diffusion models, as

a branch of generative models, have dominated current research with their powerful conditional generation capabilities.

We experiment different versions of diffusion models, including SD-V1-5 [14], SD-V2-1 [14], SD-XL [13], and SD-3.5-

L-Turbo [6]. Although different versions of models generate images with different details, resolutions, and richness, our

experiments show that different generative models have a limited impact on the results, as shown in Tab. 1. We believe this

stems from our unique retrieval design, especially the global-to-local G2L retrieval, which allows the model to focus on a

small portion of high-quality prototypes for retrieval rather than the entire prototype library. Therefore, even if the overall

quality of the prototype images generated by diffusion models, such as SD-V1-5, is not as good as that of the latest

models, our method can always find a small portion of high-quality prototypes from this large number of prototypes

to complete the retrieval.

3. Different SAMs

For prompt-based segmentation, we experiment with different SAMs, as shown in Tab. 2. With the same ViT architec-

ture, HQ-SAM [10] could capture more details, especially boundary information, than vanilla SAM [11]. In addition, the

segmentation performance of both HQ-SAM and SAM is enhanced with increasing ViT parameters.

*Corresponding authors: Jing Xu and Ping Li.
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Figure 1. More visualizations of the bimodal-like similarity distribution.

4. Different feature extractors

During the DiffPro stage, we use the self-supervised model to generate environment prototypes. In the Retrieval phase, we

use the same model to generate patch embeddings. We experiment with 15 feature extractors, ranging from optimization

methods to model architectures, as shown in Tab. 3. These feature extractors include DINO series [3], DINOv2 series [12],

MOCOv3 series [4], MAE series [8], and generative models [7, 14]. For DINO-based, MOCOV3-based, and MAE-based

models, following previous practice [15, 16], we extract the KEY features from the last layer. For DINOv2-based models,

we extract features from the last layer. Following DiffCut [5], we extract features from the last attention block of the encoder

for SD-XL-SSD-1B [7] and features from the last attention block of the second phase of the encoder for SD-V1-5 [14]. Our

experiments demonstrate that DINOv2 yields the best performance, a result that aligns with previous studies [1, 2, 9, 17],

which highlight the robust feature extraction capabilities of DINOv2.

5. Features from different positions

For the best-performing feature extractor, DINOv2, we utilize features from the last layer. We also experiment with Q/K/V

features from the last layer, as shown in Tab. 4. Unlike the DINO-based methods [15, 16] that use K features, the experiments

show that directly using features from the last layer performs best.



Stable Diffusion
CHAMELEON CAMO COD10K NC4K

Sα ↑ Eφ ↑ Fω
β ↑ M ↓ Sα ↑ Eφ ↑ Fω

β ↑ M ↓ Sα ↑ Eφ ↑ Fω
β ↑ M ↓ Sα ↑ Eφ ↑ Fω

β ↑ M ↓

SD-V1-5 0.819 0.899 0.741 0.044 0.749 0.831 0.684 0.098 0.773 0.866 0.656 0.040 0.800 0.884 0.735 0.056

SD-V2-1 0.815 0.898 0.739 0.046 0.749 0.834 0.686 0.100 0.767 0.859 0.651 0.044 0.795 0.879 0.730 0.059

SD-XL 0.815 0.893 0.735 0.045 0.746 0.825 0.678 0.101 0.772 0.867 0.657 0.041 0.801 0.885 0.736 0.057

SD-3.5-L-Turbo 0.827 0.906 0.752 0.041 0.754 0.832 0.692 0.101 0.774 0.868 0.661 0.042 0.806 0.890 0.745 0.056

Table 1. Ablation experiments of different generative models. “↑ / ↓”: the higher/lower the better. The best results are bolded to highlight.

SAM
CHAMELEON CAMO COD10K NC4K

S E mean F weight M S E mean F weight M S E mean F weight M S E mean F weight M

SAM-ViT-B 0.821 0.892 0.776 0.054 0.734 0.807 0.695 0.114 0.826 0.892 0.763 0.034 0.817 0.881 0.778 0.061

SAM-ViT-L 0.849 0.912 0.808 0.044 0.769 0.834 0.736 0.102 0.851 0.912 0.795 0.028 0.845 0.902 0.811 0.049

SAM-ViT-H 0.853 0.912 0.812 0.044 0.777 0.841 0.748 0.099 0.856 0.914 0.801 0.028 0.849 0.902 0.815 0.051

HQSAM-ViT-B 0.833 0.882 0.786 0.046 0.775 0.838 0.733 0.089 0.846 0.905 0.786 0.027 0.845 0.899 0.805 0.046

HQSAM-ViT-L 0.848 0.904 0.810 0.044 0.795 0.858 0.756 0.083 0.861 0.919 0.805 0.024 0.860 0.913 0.826 0.040

HQSAM-ViT-H 0.864 0.916 0.827 0.037 0.807 0.865 0.771 0.078 0.866 0.918 0.811 0.023 0.866 0.915 0.833 0.039

Table 2. Ablation experiments of SAM. “↑ / ↓”: the higher/lower the better. The best results are bolded to highlight.

Feat. Extra.
CHAMELEON CAMO COD10K NC4K

Sα ↑ Eφ ↑ Fω
β ↑ M ↓ Sα ↑ Eφ ↑ Fω

β ↑ M ↓ Sα ↑ Eφ ↑ Fω
β ↑ M ↓ Sα ↑ Eφ ↑ Fω

β ↑ M ↓

DINO-ViT-S/8 0.676 0.765 0.550 0.105 0.653 0.737 0.563 0.166 0.673 0.732 0.514 0.109 0.728 0.790 0.633 0.108

DINO-ViT-S/16 0.657 0.726 0.512 0.130 0.630 0.696 0.522 0.187 0.641 0.694 0.459 0.129 0.698 0.756 0.587 0.131

DINO-ViT-B/8 0.642 0.727 0.511 0.127 0.591 0.668 0.484 0.208 0.616 0.671 0.437 0.138 0.675 0.742 0.566 0.137

DINO-ViT-B/16 0.652 0.733 0.509 0.123 0.609 0.674 0.503 0.208 0.618 0.665 0.436 0.150 0.686 0.745 0.577 0.140

DINOv2-ViT-S/14 0.754 0.848 0.651 0.074 0.692 0.763 0.604 0.138 0.720 0.804 0.582 0.079 0.752 0.832 0.661 0.085

DINOv2-ViT-B/14 0.796 0.879 0.713 0.061 0.734 0.815 0.667 0.113 0.744 0.828 0.615 0.064 0.776 0.858 0.700 0.072

DINOv2-ViT-L/14 0.819 0.899 0.741 0.044 0.749 0.831 0.684 0.098 0.773 0.866 0.656 0.040 0.800 0.884 0.735 0.056

DINOv2-ViT-G/14 0.813 0.904 0.734 0.050 0.748 0.828 0.691 0.113 0.764 0.850 0.649 0.054 0.797 0.877 0.732 0.063

MOCOV3-ViT-S/16 0.534 0.595 0.300 0.139 0.548 0.618 0.381 0.195 0.624 0.705 0.422 0.107 0.624 0.705 0.422 0.107

MOCOV3-ViT-B/16 0.565 0.668 0.379 0.154 0.546 0.634 0.400 0.211 0.584 0.645 0.383 0.146 0.633 0.703 0.506 0.151

MAE-ViT-B/16 0.585 0.651 0.405 0.172 0.537 0.602 0.395 0.248 0.554 0.586 0.354 0.205 0.623 0.665 0.487 0.190

MAE-ViT-L/16 0.481 0.590 0.231 0.183 0.493 0.581 0.302 0.234 0.536 0.595 0.303 0.174 0.586 0.651 0.418 0.177

MAE-ViT-H/14 0.537 0.620 0.342 0.192 0.530 0.614 0.387 0.250 0.536 0.569 0.331 0.221 0.599 0.647 0.456 0.205

SD-XL-SSD-1B 0.577 0.603 0.348 0.122 0.594 0.639 0.419 0.147 0.605 0.659 0.374 0.090 0.608 0.665 0.417 0.124

SD-V1-5 0.523 0.644 0.302 0.169 0.473 0.593 0.284 0.250 0.483 0.588 0.213 0.194 0.493 0.619 0.286 0.219

Table 3. Ablation experiments of different feature extractors. “↑ / ↓”: the higher/lower the better. The best results are bolded to highlight.

POS.
CHAMELEON CAMO COD10K NC4K

Sα ↑ Eφ ↑ Fω
β ↑ M ↓ Sα ↑ Eφ ↑ Fω

β ↑ M ↓ Sα ↑ Eφ ↑ Fω
β ↑ M ↓ Sα ↑ Eφ ↑ Fω

β ↑ M ↓

Q 0.472 0.361 0.102 0.136 0.483 0.404 0.173 0.172 0.498 0.383 0.113 0.091 0.456 0.335 0.086 0.149

K 0.794 0.895 0.715 0.055 0.702 0.772 0.629 0.142 0.693 0.766 0.543 0.093 0.725 0.801 0.637 0.104

V 0.754 0.847 0.652 0.082 0.669 0.741 0.596 0.177 0.652 0.717 0.501 0.141 0.703 0.774 0.611 0.134

Last Layer 0.819 0.899 0.741 0.044 0.749 0.831 0.684 0.098 0.773 0.866 0.656 0.040 0.800 0.884 0.735 0.056

Table 4. Ablation experiments of DINOv2 features from different positions of the last layer. We experiment with the features from

Q/K/V/Last Layer features. The performance is optimal for features directly from the last layer.

6. Different layers of DINOv2

We also explore features from various layers of DINOv2, as shown in Tab. 5. The results reveal that features from the

final layer perform the best. We hypothesize that this is because the shallower layers of DINOv2 focus on capturing low-

level details, while the deeper layers encode higher-level semantic information, which is essential for distinguishing the

environment from camouflaged objects.

To provide a more visual comparison of how features from different layers affect the experimental results, we visualize the

similarity distributions across layers, as shown in Fig. 2. As the layer depth increases, the similarity distribution transitions



Layer
CHAMELEON CAMO COD10K NC4K

Sα ↑ Eφ ↑ Fω
β ↑ M ↓ Sα ↑ Eφ ↑ Fω

β ↑ M ↓ Sα ↑ Eφ ↑ Fω
β ↑ M ↓ Sα ↑ Eφ ↑ Fω

β ↑ M ↓

1 0.383 0.477 0.172 0.344 0.359 0.467 0.184 0.371 0.398 0.443 0.150 0.322 0.434 0.517 0.239 0.305

3 0.393 0.522 0.167 0.317 0.368 0.486 0.187 0.357 0.414 0.466 0.161 0.302 0.446 0.532 0.248 0.289

5 0.379 0.521 0.124 0.280 0.358 0.493 0.170 0.353 0.401 0.454 0.139 0.302 0.434 0.534 0.228 0.292

7 0.388 0.509 0.104 0.238 0.370 0.491 0.171 0.329 0.417 0.482 0.141 0.266 0.443 0.540 0.224 0.270

9 0.386 0.525 0.102 0.236 0.387 0.522 0.166 0.294 0.429 0.520 0.133 0.225 0.441 0.550 0.120 0.247

11 0.411 0.570 0.163 0.243 0.415 0.528 0.231 0.317 0.433 0.490 0.176 0.267 0.463 0.549 0.264 0.275

13 0.454 0.578 0.219 0.225 0.450 0.548 0.277 0.291 0.468 0.523 0.222 0.238 0.495 0.578 0.308 0.249

15 0.523 0.622 0.327 0.199 0.486 0.582 0.325 0.273 0.503 0.543 0.273 0.218 0.538 0.610 0.368 0.225

17 0.427 0.258 0.000 0.140 0.406 0.253 0.001 0.181 0.455 0.264 0.001 0.091 0.422 0.256 0.002 0.153

18 0.427 0.261 0.001 0.140 0.407 0.256 0.004 0.181 0.455 0.266 0.004 0.091 0.423 0.260 0.006 0.153

19 0.426 0.256 0.001 0.140 0.408 0.259 0.009 0.182 0.460 0.277 0.015 0.091 0.428 0.270 0.017 0.153

20 0.457 0.319 0.068 0.137 0.432 0.303 0.062 0.177 0.498 0.361 0.101 0.090 0.459 0.332 0.086 0.150

21 0.687 0.711 0.518 0.090 0.593 0.588 0.396 0.151 0.685 0.722 0.499 0.069 0.665 0.685 0.504 0.108

22 0.802 0.886 0.723 0.053 0.724 0.796 0.647 0.114 0.761 0.858 0.645 0.052 0.779 0.860 0.710 0.073

23 0.819 0.899 0.741 0.044 0.749 0.831 0.684 0.098 0.773 0.866 0.656 0.040 0.800 0.884 0.735 0.056

Table 5. Ablation experiments of different layers in DINOv2. The features from the last layer contain higher-level semantics and are

capable of distinguishing between the environment and camouflaged objects, thus achieving the best performance. For some layers and

some images, there may be no inter-peak minima, we set the threshold to 0.5.

Figure 2. Similarity distributions for features from different layers of DINOv2. The image is randomly selected.

from a single peak to a bimodal shape.

7. Failure cases

Considering the effect of outliers, we only consider similarity thresholds in the range of 0.2 to 0.8 in this paper. If the

threshold is not detected in this range, 0.5 is adopted by default. We present three types of failure cases in Fig. 3: (a) When

the distribution around the minima is relatively flat, using this value as the threshold may overlook some details, as shown in
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Figure 3. Failure cases.

the first row. (b) When the similarity distribution does not exhibit a clear bimodal shape, the inter-peak minima are absent, as

seen in row 2. In this case, we set the threshold to 0.5. While this fixed threshold can localize objects, it struggles to capture

finer details. (c) When multiple minima are present, as shown in row 3, we select the first minimum as the threshold, which

similarly leads to missing information.

These failures primarily result from the non-discriminatory nature of the similarity distribution between the environment

and the camouflaged object. To address this issue, we propose introducing additional prototype categories, such as specific

camouflaged object categories, as a potential solution. We plan to continue exploring this challenge in future research.
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