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Figure 6. The detailed structure of the SuperPC network.

A. Model Structure Details

The SuperPC Model’s detailed structure, including the core

diffusion noise prediction network, is shown in Figure 6.

Moreover, it shows how information from raw, local, and

global modules is integrated into the main network. We

delve into the detailed explanation of them in this section.

For the core noise prediction network, we use the Point-

Net++ [45] architecture as the backbone. However, we de-

viate from its original configuration, opting instead for the

modified version introduced in PDR [36] and DDPMPU

[47]. This adaptation is due to the original PointNet++ net-

work’s inability to effectively process point features from

clouds resembling Gaussian noise. The network comprises

a three-level PointNet++ encoder and decoder structure. In

the encoding stages, we set the number of neighbors, K, as

16 for set abstraction purposes. In the decoding stages, K is

set to 8 to facilitate feature propagation.

Since we have already detailed how raw information is

incorporated into the core network in Section 4.2, we will

next explain how information from local and global levels

is integrated into the core network. After passing the input

image and point cloud into the local and global modules, we

get the local feature map and the global latent code. The lo-

cal feature map M(Nl, 3+Cl) can essentially be viewed as

Nl points each possessing 3+Cl features, which shares the

same format as the output P1(N1, 3 + C1) of the core net-

work’s first layer. We employ the point spatial interpolation

method mentioned in Section 4.2 to align the local informa-

tion from the local feature map with the output of the first

layer of the core network. The global latent code z(1, 1024)
is added to the core network via the concatsquash layer [17]

suggested by Luo [34], which is defined as:

P ′
1 = CS(P1, t, z) = P1 ⊙ σ(W1c+ b1) +W2c, (7)

where P1 represents the input to the layer, while P ′
1 sig-

nifies the output. Here, c = [t, sin(t), cos(t), z] constitutes

the context vector including the embedding of time t and the

global latent code z, with σ indicating the sigmoid function.

The parameters W1,W2 and b1 are all subject to optimiza-

tion during training. The code with detailed implementation

will be released upon the paper’s acceptance.

B. Benchmark Details

B.1. ShapeNet

For the object-level benchmark, we render the images of the

3D objects in the ShapeNet [7] following the setting and



method provided by [11, 68] since SuperPC integrates the

image information. In addition to the rendered images, we

sample the 3D models from the ShapeNet Core Dataset to

create ground truth point clouds that are paired with the im-

ages. We appreciate the perspective of the ShapeNet55/34

dataset [72] on the necessity of assessing model generaliza-

tion performance across unseen categories. We chose thir-

teen categories used by [11, 68] from the ShapeNet Core

dataset. Ten of these categories are designated as ‘seen’ for

training and validation, with the remaining three categories

earmarked as ‘unseen’ for testing, to evaluate the models’

ability to generalize. Each ground truth point cloud is stan-

dardized to contain 8,192 points, following the specifica-

tions stated in the ShapeNet55/34 dataset [72].

B.2. TartanAir

Existing point cloud processing datasets typically concen-

trate on simple, synthetic objects, which are insufficient to

verify the performance of models in complex scenarios. To

bridge this gap and demonstrate the effectiveness of our

work, we introduce a scene-level benchmark utilizing the

TartanAir dataset [63], aimed at evaluating model perfor-

mance in complex environments. It features fifteen diverse

indoor and outdoor environments, covering different sea-

sons and lighting conditions, and is derived from 176 se-

quences totaling over 600,000 frames. This results in a

comprehensive dataset of 85,618 point clouds paired with

images, providing a robust benchmark for assessing point

cloud processing tasks. Most existing point cloud process-

ing datasets focus solely on simple, virtual objects. How-

ever, in real-world applications, the point clouds we of-

ten need to process consist of complex scenes with many

objects. Therefore, we propose constructing a scene-level

benchmark based on the TartanAir [63] dataset to evalu-

ate the effectiveness of models and methods in perform-

ing point cloud processing tasks within complex scenarios.

TartanAir provides the RGB and Depth images in eighteen

photo-realistic simulation environments. We generate the

raw point clouds based on the RGBD images with a depth-

limit truncation to remove those points with huge depth val-

ues like the points representing the sky. These raw point

clouds are downsampled to 46080 points to serve as the

ground truth, accommodating the memory constraints of

training baseline models [35, 72] and meeting the require-

ments for Earth Mover’s Distance (EMD) calculations.

B.3. KITTI360

Although the TartanAir Benchmark provides data for eval-

uating scene-level performance, it is based on simulations.

To better validate the effectiveness of our method in real-

world scenarios, we also include a real-world, scene-level

point cloud processing benchmark based on KITTI-360

[31]. It provides high-quality images and accurate accumu-

lated point clouds. We stitch together the accumulated point

clouds from each sequence to create dense global maps and,

based on the pose information, crop out dense local point

clouds from these maps. Each local point cloud is then

downsampled to 46,080 points to serve as ground truth and

matched with the corresponding frame’s image to form the

KITTI-360 benchmark dataset used in this work.

C. Metrics Details

C.1. Densityaware Chamfer Distance

DCD [65] improves the evaluation of visual quality for

3D shape generation tasks by considering the density of

points in a point cloud, unlike the traditional Chamfer Dis-

tance. DCD’s formulation takes into account both the

point-to-point distances and the point densities, providing a

more discriminative measure. The DCD between two point

clouds S1 and S2 is given by the following equation:

dDCD(S1, S2) =
1

2

(

1

|S1|
∑

x∈S1

min
y∈S2

(

1− e−α||x−y||2
)

+
1

|S2|
∑

y∈S2

min
x∈S1

(

1− e−α||x−y||2
)

) (8)

In this formula, S1 and S2 are the two sets of points that

represent point clouds. The cardinalities |S1| and |S2| indi-

cate the number of points in each set. The variables x and

y correspond to the points in S1 and S2, respectively. The

term ||x − y||2 is the squared Euclidean distance between

the points x and y. The exponential term e−α||x−y||2 is used

to calculate a distance that is sensitive to the point density,

with α acting as a temperature scalar that influences the

sensitivity of the distance to point density variations. The

minimum function min finds the nearest neighbor distance,

ensuring that each point in one set is compared to its closest

point in the other set. This formulation indicates that the

DCD is not just the average nearest neighbor distance but

also incorporates a normalization based on the local density

of points, which helps to prevent the measure from being

too sensitive to outliers and provides a better representation

of the actual shape and structure of the point clouds.

D. Additional Experiments

In the main text, we have already discussed the performance

and generalization experiments. To provide a more compre-

hensive evaluation, we will provide (1) the ablation study

in Appendix D.1, (2) the complexity analysis in Appendix

D.2, (3) the comparison between the single unified model

and different combinations of multiple models for individ-

ual tasks with the same SuperPC framework in Appendix

D.3, (4) an evaluation of different integration orders when

combining SOTA methods in Appendix D.4, and (5) the col-

orization task results in Appendix D.5.



Table 3. Ablation Study of the Image-Point Fusion and Three-Level-Info conditions.

Fusion Stage Condition Module ShapeNet [7] TartanAir [63] KITTI-360 [31]

Early Deep Raw Local Global DCD(↓) EMD(↓) F1(↑) DCD(↓) EMD(↓) F1(↑) DCD(↓) EMD(↓) F1(↑)

✓ ✓ ✓ ✓ 0.661 8.59 0.254 0.822 11.73 0.183 0.935 20.89 0.177

✓ ✓ ✓ ✓ 0.623 8.24 0.295 0.796 11.45 0.239 0.896 20.56 0.203

✓ ✓ ✓ ✓ 0.648 8.31 0.263 0.811 12.68 0.201 0.925 23.79 0.181

✓ ✓ ✓ ✓ 0.594 7.79 0.375 0.658 9.68 0.319 0.794 17.28 0.227

✓ ✓ ✓ ✓ 0.693 8.96 0.248 0.697 10.43 0.298 0.852 19.71 0.205

✓ ✓ ✓ ✓ ✓ 0.476 2.21 0.409 0.558 3.527 0.384 0.681 9.58 0.365

Table 4. Comparison between the single unified model and different combinations of multiple models for individual tasks (all the models

use the same SuperPC framework for fairness).

Different Combinations

ShapeNet [7] TartanAir [63] KITTI-360 [31]

DCD (↓) EMD (↓) F1 (↑) DCD (↓) EMD (↓) F1 (↑) DCD (↓) EMD (↓) F1 (↑)

SPC(U) + SPC(C) + SPC(D) 0.506 2.46 0.374 0.574 3.67 0.354 0.715 11.92 0.335

SPC(C) + SPC(D+U) 0.492 2.37 0.388 0.561 3.59 0.373 0.692 10.17 0.352

SPC(D) + SPC(C+U) 0.495 2.41 0.383 0.571 3.63 0.364 0.707 10.84 0.343

SPC(U) + SPC(C+D) 0.489 2.32 0.391 0.564 3.61 0.368 0.698 10.53 0.347

SPC(C+U+D) 0.476 2.21 0.409 0.558 3.53 0.384 0.681 9.58 0.365

D.1. Ablation Study

The ablation studies are performed to evaluate the effective-

ness of the five critical components in our model: the dual-

spatial early fusion, the attention-based deep fusion, the raw

module, the local module, and the global module.

Early Fusion and Deep Fusion To demonstrate the impor-

tance of our spatial-mixed-fusion strategy, we conducted

an ablation study by removing the image modality at two

critical fusion stages: the early-fusion stage (image feature

projection) and the deep-fusion stage (image encoder with

the cross-attention module), as described in Section 4.2 and

Section 4.3. As shown in Table 3, excluding either fusion

stage results in a significant decline in overall performance

across all three benchmarks, underscoring the importance

of incorporating both the early fusion and the deep fusion.

Raw, local, and global module The evaluation of the three-

level modules involves removing each of these components

individually. Excluding any of these elements disrupts the

integrity of the three-level-conditioned framework, leading

to a marked deterioration in overall performance as shown

in Table 3. This effect is most pronounced with the raw

module, as its exclusion leads to a notable decline in perfor-

mance. Generally speaking, every module plays a signifi-

cant role in building the TLC framework and GMF strategy.

D.2. Complexity Analysis

To fulfill the goal of the combination task, previous single-

task models [21, 35, 47, 72] could only be sequentially in-

terpreted together to accomplish point cloud upsampling,

Table 5. Complexity of SOTAs combination and SuperPC with

different reverse steps. PU, PC, and PD are the SOTAs of denosing

[35] , completion [72], and upsampling [47] on ShapeNet. All the

results were tested on an NVIDIA GeForce RTX 3090 GPU.

Method Params FLOPs tinf DCD(↓)

PD+PC+PU 33.36 M 593.6 G 3.92 s 0.462

SuperPC (50 steps) 36.78 M 93.5 G 0.76 s 0.441

SuperPC (100 steps) 36.78 M 183.4 G 1.38 s 0.412

SuperPC (1000 steps) 36.78 M 1809.6 G 14.69 s 0.387

completion, and denoising step by step. In contrast, our

SuperPC is capable of completing the entire combination

task within one single model. Therefore, theoretically, not

only can it achieve higher performance as proven in Sec-

tion 3.1, but it also requires less computational consumption

and shorter inference time. As shown in Table 5, SuperPC

demonstrates higher performance across all three metrics,

along with lower FLOPs and inference time (tinf ) com-

pared with the combination of the SOTAs [35, 47, 72] of the

three single tasks, whether setting the reverse steps of the

diffusion model to 50 or 100. Due to the principles of diffu-

sion models, more reverse steps can improve the quality of

inference but also require more computation and inference

time. In practical applications, using 100 steps allows the

model to generate high-quality point clouds within a rel-

atively short inference time. Moving forward, we aim to

further enhance the model’s efficiency by either refining the

point diffusion mechanism or replacing the current complex

point cloud learning backbone [45] with the sparse-tensor-

based backbone like Minkowski Engine [10].



Table 6. Results of different SOTAs integration methods on the combination task.

Task Methods

ShapeNet [7] TartanAir [63] KITTI-360 [31]

DCD (↓) EMD (↓) F1 (↑) DCD (↓) EMD (↓) F1 (↑) DCD (↓) EMD (↓) F1 (↑)

Combination

PD→PC→PU 0.489 2.64 0.391 0.612 3.93 0.125 0.749 10.18 0.254

PU→PD→PC 0.497 2.36 0.375 0.609 3.82 0.130 0.763 10.29 0.248

PU→PC→PD 0.521 2.93 0.362 0.583 3.64 0.139 0.725 10.06 0.266

SuperPC (ours) 0.476 2.21 0.409 0.558 3.527 0.154 0.681 9.58 0.287

GT Input

SOTAs’ Combination: PU+PC+PD Ours

Figure 7. The quality results of SuperPC and SOTAs on the combination task.

D.3. Single model vs multiplemodelscombination
Despite significant advancements, prior approaches

[21, 32, 35, 72] predominantly tackle each of these

tasks—completion, upsampling, denoising, and coloriza-

tion—independently. However, such isolated strategies

overlook the inherent interdependence among defects in-

cluding incompleteness, low resolution, noise, and lack of

color, which frequently coexist and influence one another.

Currently, there is no single model capable of address-

ing all four tasks simultaneously. A unified model offers

not only computational efficiency but also the ability to pre-

vent error accumulation across tasks while leveraging their

interconnectivity to mutually enhance performance. For in-

stance, as illustrated in Figure 7, errors from a completion

model often propagate to subsequent upsampling. In ad-

dition to qualitative observations highlighting the limita-

tions of combining multiple specialized models, we con-

ducted extensive quantitative experiments to substantiate

this claim. Specifically, we compared our single unified

model with various combinations of multiple models for in-

dividual tasks, ensuring a fair comparison by implementing

all models within the same SuperPC framework. As demon-

strated in Table 4, the single unified model consistently out-

performs all combinations across three benchmarks. These

findings underscore the necessity of a single, integrated

model capable of simultaneously addressing all four tasks.

D.4. Different SOTAs integration methods
In the combination task, we integrate the SOTA models

[21, 35, 72] for each individual task in various reasonable

Table 7. Colorization Experiment. MSE is used as the metric.

Methods ShapeNet TartanAir KITTI-360

Learning-based [32] 0.0316 0.0429 0.0536

Geometry-based 0.0276 0.0131 0.0142

SuperPC 0.0102 0.0117 0.0129

sequences, as shown in Table 6. The sequence starting with

upsampling (PU) [21], followed by completion (PC) [42],

and ending with denoising (PD) [35] yields relatively bet-

ter outcomes compared to other combinations in the scene-

scale datasets - TartanAir and KITTI-360. However, the se-

quence of ”PD→PC→PU” shows better performance on the

object-level dataset - ShapeNet. Obviously, SuperPC sur-

passes all the integration methods across the three datasets.

D.5. Colorization Task

In the colorization task, we evaluate the qualitative perfor-

mance of the SuperPC compared to the baseline model [32]

and the SOTA - geometry-based method. The learning-

based baseline model sometimes generates weird unreal

colors as shown at the left bottom of Figure 9. The

projection-based method exhibits limitations in rendering

colors for obscured scenes. A specific instance highlighted

in Figure 8 reveals its failure to accurately colorize grass

hidden by a tree. In contrast, SuperPC effectively predicts

the colors for occluded areas, producing the point cloud that

closely aligns with the ground truth texture and colors. Ad-

ditionally, as shown in Table 7, SuperPC outperforms both

the learning-based and the geometry-based methods.



D.6. Experiment on Observation Incompleteness

We generate three distinct levels of observation incomplete-

ness by stitching point clouds from one, three, and five ad-

jacent frames, followed by cropping them to maintain con-

sistency in camera pose and field of view. The PC com-

pletion performance of SuperPC is compared against the

current SOTA method using the average results across these

three levels of incompleteness, evaluated on two scene-level

datasets: TartanAir [63] and KITTI-360 [31].

As shown in Table 8, SuperPC consistently outperforms

the SOTA method across both evaluated datasets, demon-

strating superior robustness and effectiveness in handling

varying degrees of observation incompleteness.

Datasets Methods CD DCD EMD F1

KITTI-360 [31]
LiDiff [42] 9.41 0.693 9.82 0.247
SuperPC 8.63 0.667 9.24 0.298

TartanAir [63]
LiDiff [42] 7.91 0.631 4.52 0.296
SuperPC 7.04 0.597 4.15 0.327

Table 8. Incomplete observations evaluation.

D.7. Combination Experiment on PCN Dataset

We present a brief performance comparison between Su-

perPC and SOTA methods combination on the PCN dataset

[73]. As shown in Table 9 below, the results demonstrate

that SuperPC significantly outperforms SOTA methods on

the combination task, which is our main contribution.

Methods CD DCD EMD F1

[21]→[42]→[35] 11.03 0.495 3.44 0.592

SuperPC 10.12 0.432 2.13 0.675

Table 9. Combination task performance on PCN dataset.



E. More Qualitative Samples

SOTA GT Ours

Figure 8. The quality results of SuperPC and SOTA (projection) on the point cloud colorization task with zoom in details on the generated

green color of the grass field.

Figure 9. The quality results of SuperPC method and baseline learning method (PCCN [32]).
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Figure 10. More qualitative results on the ShapeNet, TartanAir, and KITTI-360 dataset.



Figure 11. Zoom-in figure of the completion task qualitative results.



Figure 12. Zoom-in figure of the upsampling task qualitative results.



Figure 13. Zoom-in figure of the denoising task qualitative results.




