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Supplementary Material

In this supplementary material, we provide complemen-
tary information on theory and experiments. Specifically,
in Appendix A, we supplement the proofs of mathemat-
ical properties of decision uncertainty and cross-modal
uncertainty. In Appendix B, we offer additional exper-
imental settings and experimental results. More specif-
ically, Appendix B.1 introduces a detailed overview of
the datasets used in all experiments, Appendix B.2 pro-
vides a comprehensive description of the baselines, Ap-
pendix B.3 presents precision-recall curve comparisons,
Appendix B.4 visualizes the effectiveness of cross-modal
uncertainty, Appendix B.5 provides the qualitative re-
sults for OOD detection, Appendix B.6 provides visualiza-
tion of the learned representation by applying t-SNE [1]
method, Appendix B.7 offers additional counter-intuitive
problem analysis, Appendix B.8 provide parameter analy-
sis, and Appendix B.9 compares different uncertainty merg-
ing schemes and proves the superiority of the proposed
scheme.

A. Mathematical Proof of Properties
A.1. Proof of the Properties for Decision Uncer-

tainty
In this section, we further supplement Section 3.5 with
properties of decision uncertainty and corresponding clear
proof. First, we begin by reviewing the definition of deci-
sion uncertainty:

Definition 1: Let cji = [cji1, c
j
i2, ..., c

j
iK ] ∈ RK be the

vector of category credibility of the i-th sample of j-th
modality and ∀cjik ∈ [0, 1], k = 1, 2, ...,K. Then, the
decision uncertainty is defined by

uj
i = U(cji ) =

H(cji )

K · ln 2
=

∑K
k=1 S(c

j
ik)

K · ln 2

=

∑K
k=1 −cjik · ln(cjik)− (1− cjik) · ln(1− cjik)

K · ln 2
,

(1)

where H(cji ) is the entropy of category credibility, K is the
number of categories, and S(t) = −t ln t−(1−t) ln(1−t).
This decision uncertainty is in the range [0, 1], and has the
following properties:

Property 1 (Lower bound): Let cji = [cji1, c
j
i2, ..., c

j
iK ] ∈

RK be the vector of category credibility of the i-th sample
of j-th modality and ∀cjik ∈ [0, 1], k = 1, 2, ...,K. There-
fore,

uj
i = U(cji ) ⩾ 0, (2)

and the equality holds if and only if ∀cjik ∈ {0, 1}.

Proof 1: Since function S(t) reaches its minimum 0 at
t = 0 or t = 1, we have

H(cji ) =

K∑
k=1

S(cjik) ⩾ 0, (3)

and then

uj
i = U(cji ) =

H(cji )

K · ln 2
⩾ 0, (4)

the equation holds if and only if ∀cjik ∈ {0, 1}, k =
1, 2, ...,K. This completes the proof.

Property 2 (upper bound): Let cji = [cji1, c
j
i2, ..., c

j
iK ] ∈

RK be the vector of category credibility of the i-th sample
of j-th modality and ∀cjik ∈ [0, 1], k = 1, 2, ...,K. There-
fore, the uncertainty

uj
i = U(cji ) ⩽ 1 (5)

and the equality holds if and only if ∀cjik = 0.5, k =
1, 2, ...,K.

Proof 2: Since the function S(t) reaches its maximum
ln 2 at t = 0.5, e.g, S(t) ⩽ ln 2. Therefore, we have

H(cji ) =

K∑
k=1

S(cjik) ⩽ K · ln 2 (6)

and then

uj
i = U(cji ) =

H(cji )

K · ln 2
⩽ 1, (7)

the equation holds if and only if ∀cjik = 0.5, k = 1, 2, ...,K.
This completes the proof.

Property 3 (Symmetry): Let cj1 = [cj11, c
j
12, ..., c

j
1K ]

be the vector of credibility degrees, and let cj2 =

[cj21, c
j
22, ..., c

j
2K ] be the another vector of credibility

degrees. If [cj11, c
j
12, ..., c

j
1K ] is a rearrangement of

[cj21, c
j
22, ..., c

j
2K ], Then we have U(cj1) = U(cj2).

Proof 3: The property follows immediately from the def-
inition of entropy. The symmetry property establishes that
decision uncertainty remains consistent regardless of the
permutations of credibility degrees.

A.2. Proof of the Properties for Cross-modal Un-
certainty

In this section, we provide supplementary material for Sec-
tion 3.5, including proofs that demonstrate how cross-
modal uncertainty satisfies the four specified properties.
We begin by revisiting the definition of cross-modal uncer-
tainty:



Table 1. General statistics of the datasets used in the experiments, where ‘* / * / *’ represent the respective counts of training, validation,
and testing image-text pairs. The symbol K denotes the total number of categories, while dI and dT signify the dimensionalities of the
image and text features obtained by VGGNet [2] and word2vec [3], respectively.

Dataset train / val / test K dI dT

Pascal Sentence [4] 800 / 100 / 100 20 4,096 300
Wikipedia [5] 2,173 / 231 / 462 10 4,096 300
NUS-WIDE-10K [6] 8,000 / 1,000 / 1,000 10 4,096 300
INRIA-Websearch [7] 9,000 / 1,332 / 4,366 100 4,096 1,000
XMediaNet [8] 32,000 / 4,000 / 4,000 200 4,096 300

Definition 2: Let u1
i ∈ [0, 1] and u2

i ∈ [0, 1] represent
the decision uncertainties of the i-th sample from modalities
1 and 2, the cross-modal uncertainty across them is defined
by

u1⇔2
i = g(u1

i , u
2
i ) = 1− (1− u1

i )(1− u2
i ). (8)

Its properties and the corresponding mathematical proof
are as follows:

Property 1: 0 ⩽ u1⇔2
i ⩽ 1.

Proof 1: Because u1
i ∈ [0, 1] and u2

i ∈ [0, 1], it’s pretty
obvious that

1 ⩾ (1− u1
i )(1− u2

i ) ⩾ 0

1 ⩾ 1− (1− u1
i )(1− u2

i ) ⩾ 0
(9)

where the left equal sign is true if and only if u1
i and u2

i = 0,
and the right equal sign is true if and only if u1

i and u2
i = 1.

This completes the proof.
Property 2: u1⇔2

i ⩾ max(u1
i , u

2
i ).

Proof 2: Assuming that

u1⇔2
i = 1− (1− u1

i )(1− u2
i ) ⩾ max(u1

i , u
2
i ), (10)

so we have

2u1⇔2
i = 2− 2(1− u1

i )(1− u2
i ) ⩾ u1

i + u2
i , (11)

it can be deduced as:

2− 2(1− u1
i − u2

i + u1
iu

2
i ) ⩾ u1

i + u2
i

u1
i + u2

i ⩾ 2u1
iu

2
i .

(12)

Therefore, if u1
i + u2

i ⩾ 2u1
iu

2
i is true, 1 − (1 − u1

i )(1 −
u2
i ) ⩾ max(u1

i , u
2
i ) is also true. So, we below prove that

u1
i + u2

i ⩾ 2u1
iu

2
i is true. To be specific, given by AM–GM

inequality:

u1
i + u2

i ⩾ 2
√
u1
iu

2
i . (13)

When u1
i ∈ [0, 1] and u2

i ∈ [0, 1] is true, it’s obvious that√
u1
iu

2
i ⩾ u1

iu
2
i . (14)

Combine Equation (13) and Equation (14), we can easily
get

u1
i + u2

i ⩾ 2u1
iu

2
i . (15)

Therefore, the hypothesis that u1⇔2
i ⩾ max(u1

i , u
2
i ) is valid

and this property is verified.
Property 3: if u1

i = 1 or u1
i = 1, u1⇔2

i = 1.
This does not require formal proof, as it is straightfor-

ward to deduce.
Property 4: if u1

2 ⩾ u1
1 and u2

2 ⩾ u2
1, u1⇔2

2 ⩾ u1⇔2
1 .

Proof 4: if u1
2 ⩾ u1

1 and u2
2 ⩾ u2

1, u1⇔2
2 ⩾

u1⇔2
1 : Assuming that u1

2 ⩾ u1
1 and u2

2 ⩾ u2
1, because

u1
1, u

1
2, u

2
1 and u2

2 ∈ [0, 1], we can deduced that 1− u1
2 ⩽

1− u1
1 and 1− u2

2 ⩽ 1− u2
1, and then

(1− u1
2)(1− u2

2) ⩽ (1− u1
1)(1− u2

1)

1− (1− u1
2)(1− u2

2) ⩾ 1− (1− u1
1)(1− u2

1)

u1⇔2
2 ⩾ u1⇔2

1 .

(16)

This completes the proof.

B. Additional Experiments
Some experimental details and results could not be fully
presented in the main paper due to space constraints. This
section complements additional details, results, and analy-
ses.

B.1. Datasets
Without compromising generality, we utilize five com-
monly utilized image-text datasets to assess the cross-modal
performance in this paper. The details about those experi-
mental datasets are listed as follows, and the statistical re-
sults of the datasets are summarized in Table 1.
• Pascal Sentence [4] comprises 1000 image-text pairs.

Images are sourced from the 2008 PASCAL development
kit, while each corresponding text sample contains five
independent sentences, annotated by different individu-
als on Amazon Mechanical Turk. For a fair comparison,
the image-text pairs of the dataset are randomly selected
to constitute 3 sets: the training set with 800 image-text



pairs, the validation set with 100 image-text pairs, and the
testing set with 100 image-text pairs.

• Wikipedia [5] is a widely-used dataset for cross-media
retrieval. It contains 2, 866 image-text pairs and each im-
age or text sample is classified into 10 classes (i.e., liter-
ature, media, music, etc.). In the experiment, we sample
2, 173 pairs as the training set, 231 as the validation set,
and 462 as the testing set.

• NUS-WIDE-10K [6] utilized in this study is a subset
of the NUS-WIDE dataset [9] provided by the authors of
Reference [6]. The author selected an equal number of
image-text pairs (1000 pairs per class) from the top ten
most populous categories (such as grass, person, sky, etc.)
within the NUS-WIDE dataset, creating the NUS-WIDE-
10K subset. In the experiment, we sample 8, 000 pairs as
the training set, 2, 000 as the validation set, and 2, 000 as
the testing set.

• INRIA-Websearch [7] originally comprises 71,478 im-
ages, each accompanied by a corresponding text descrip-
tion. In this study, we utilize a specific subset of it,
curated by the authors of [10]. This subset focuses
on 14,698 samples, drawn from the 100 most populous
classes in the original collection. We randomly divide the
dataset into three subsets: 9,000, 1,332, and 4,366 image-
text pairs for training, validation, and testing sets, respec-
tively.

• XMediaNet [8] is a large-scale multimodal dataset,
which comprises 5 media types, i.e., image, text, video,
audio, and 3-D model. It comprises 40,000 images,
40,000 texts, 10,000 videos, 10,000 audio clips, and 2,000
3D models from 200 semantic classes. Each sample of
different modalities has 200 non-overlap categories, For
this study, we only focus on images and text. In our ex-
periments, we sample 32,000 pairs for the training set,
4,000 for the validation set, and 4,000 for the testing set.

B.2. Baselines
To verify the effectiveness of the proposed method in cross-
modal retrieval, we compare 13 state-of-the-art methods
in the experiments, including MCCA [11], ACMR [12],
DSCMR [13], SDML [14], MAN [15], DRSL [16], AL-
GCN [17], ELRCMR [18], MARS [19], GNN4CMR [20],
RONO [21], SCL [22] and HOPE [23]. We briefly intro-
duce these compared methods in the following paragraphs:

• MCCA [11] learns multiple modality-specific linear
transformations to map the different modalities into a
common space by maximizing the correlations between
all possible pairwise modalities.

• ACMR [12] utilizes adversarial learning to discover an
effective common subspace, incorporating a feature pro-
jector, a modality classifier, and a triplet constraint.

• DSCMR [13] is an early exploration into deep cross-
modal retrieval, minimizing both discrimination loss and

modality invariance loss to derive shared representations
across diverse modalities.

• SDML [14] is one of the first works to independently
project data of an unfixed number of modalities into a
predefined common subspace.

• MAN [15] pioneers multimodal representation learning
(involving more than two modalities) through adversarial
learning.

• DRSL [16] is the first approach that incorporates relation
networks into cross-modal learning, effectively bridging
the heterogeneity gap between different modalities by di-
rectly learning natural pairwise similarities.

• ALGCN [17] uncovers the semantics of labels and con-
serves semantic correlations across different modalities
through the joint training of two different branches.

• ELRCMR [18] solves the problem of noise label mem-
orization and cluster drift in cross-modal retrieval by
employing early learning regularization contrast learning
and dynamic weight balance strategy.

• MARS [19] treat label information as a distinct modality
and realize scalable cross-modal retrieval, which allows
each modality to be trained independently.

• GNN4CMR [20] integrates multi-label contrastive learn-
ing with dual adversarial graph neural networks for cross-
modal retrieval.

• RONO [21] tackles the problem of 2D-3D retrieval under
label noise by proposing a consistency loss and a robust
center learning strategy.

• SCL [22] uses unlabeled data to learn discriminative and
unsupervised contrast learning to model intra-modal and
inter-modal instance relationships to improve retrieval
performance.

• HOPE [23] is a semi-supervised cross-modal retrieval
method that effectively deals with the complex relation-
ship between 2D and 3D data through hierarchical align-
ment and fuzzy pseudo-label technology.

B.3. Precision-recall Curve Comparisons
To further comprehensively compare the retrieval perfor-
mance between our FUME and the other baselines (i.e.,
ACMR [12], DSCMR [13], SDML [14], MAN [15],
DRSL [16], ALGCN [17], ELRCMR [18], MARS [19],
GNN4CMR [20], RONO [21], SCL [22] and HOPE [23]),
we plotted Precision-recall (P-R) curves as shown in Fig-
ure 1. Precision and recall represent two conflicting met-
rics: an increase in one often leads to a decrease in the
other. In P-R curve plots, methods represented by curves
positioned higher on the graph typically demonstrate better
performance. The results show that our FUME outperforms
the other baselines in both image-query-text and text-query-
image retrieval tasks, especially on large datasets. This fur-
ther confirms the effectiveness of our FUME in cross-modal
retrieval.
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Figure 1. Precision-recall curves for the image-query-texts (I
→ T) and text-query-images (T → I) experiments on the Pascal
Sentence, Wikipedia, NUS-WIDE-10K, INRIA-Websearch, and
XMediaNet datasets. The abbreviations of ‘I’ and ‘T’ represent
image and text respectively.

B.4. Visualization of Cross-Modal Uncertainty Ef-
fectiveness

To further evaluate the proposed FUME in capturing in-
credible retrieved results, we visualize the cosine distance
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Figure 2. Density of cosine distance of representations in the com-
mon space of on the Pascal Sentence, Wikipedia, NUS-WIDE-
10K, INRIA-Websearch, and XMediaNet datasets. ‘t=0.5’ means
setting the cross-modal uncertainty threshold to 0.5, i.e., the sam-
ples whose cross-modal uncertainty greater than 0.5 are removed.

(a lower cosine distance indicates higher similarity) density
of representations in the common space. Results are shown
in Figure 2, from which the following observation can be
drawn:

• In Figure 2 (a), (c), (e), (g), and (i), it is challenging to dis-



(a) Original image inputs (b) Original text inputs (c) Image representations (d) Text representations

(e) Total representations (f) Total representations (t=0.5) (g) Total representations (t=0.3) (h) Total representations (t=0.1)

Figure 3. Visualizing the representations of image and text data in the testing set of the NUS-WIDE-10K [6] dataset by t-SNE [1].
Circles represent samples originating from the image modality, while triangles correspond to samples from the text modality. Samples
belonging to the same semantic category are consistently marked with the same color. (a) Original image representation. (b) Original text
representation. (c) Image representation on the common representation space. (d) Text representation on the common representation space.
(e) Image and text representations (total representations) in the common space. (f)-(h) Image and text representations (total representations)
in the common space after the sample with decision uncertainty greater than 0.5, 0.3, and 0.1 are removed, respectively.
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Figure 4. FUME’s cross-modal retrieval performance versus dif-
ferent values of α on the testing set of the XMediaNet datasets.

tinguish between matched and unmatched samples solely
based on the cosine distance.

• After removing retrieved results whose cross-modal un-
certainty is greater than 0.5, the matched and unmatched
overlap significantly less, as shown in Figure 2 (b), (d),
(f), (h), and (j). This means the proposed cross-modal
uncertainty precisely captures incredible results and can
thus be used to improve retrieval performance and achieve
trusted cross-modal retrieval.

(a) EDL (Accuracy = 0.721) (b) Ours (Accuracy = 0.743)

Figure 5. Scatter plots of entropy and uncertainty of the classi-
fication results on the image modality in the testing set of NUS-
WIDE-10K dataset.

B.5. Qualitative results for OOD detection

To supplement Section 4.4, we conduct quantitative exper-
iments for out-of-distribution (OOD) detection, using the
False Positive Rate at 95% True Positive Rate (FPR95) as
the evaluation metric. : When using NUS-WIDE-10K as
in-distribution (ID) data and XMediaNet as OOD data, our
FUME achieves an FPR95 of 0.4, remarkably lower than
EDL’s 0.959. Conversely, when XMediaNet is used as ID
data and NUS-WIDE-10K as OOD data, FUME achieves an
FPR95 of 0.002, better than EDL’s 0.990. Both qualitative



and quantitative results consistently demonstrate FUME’s
superiority in OOD detection.

B.6. Visualisation of the Learned Representation

To visually investigate the effectiveness of the proposed
FUME, we adopt the t-SNE [1] method to embed the rep-
resentations of the image and text samples into a two-
dimensional visualization plane using the NUS-WIDE-
10K [6] dataset. The results of the original images rep-
resented by the 4,096-dimensional (VGGNet [2]) features
and the text samples represented by the 300-dimensional
(word2vec [3]) features (after the embedding process) are
displayed in Figure 3 (a) and Figure 3 (b), respectively. The
results show significant distribution differences between the
image and text modalities in the NUS-WIDE-10K dataset,
highlighting the challenges of sample classification in the
original input space.

Figure 3 (c) and Figure 3(d) give the distribution of the
learned representation of image and text, respectively. From
these results, the proposed FUME contributes to discrimi-
nating the samples with different semantic categories, and
several clusters show discriminative intervals. Figure 3 (e)
demonstrates the distributions of image modality and text
modality representations. From the results, we can see that
the distributions of the image and text modalities exhibit
considerable overlap, rendering them challenging to dis-
cern. This overlap underscores the significant reduction in
cross-modal discrepancy achieved through the employment
of our proposed FUME method.

To further estimate the effectiveness of decision uncer-
tainty, we remove samples based on their decision uncer-
tainty. As shown in Figure 3 (f)-(h), after the samples with
decision uncertainty greater than 0.5, 0.3, and 0.1 were fil-
tered out successively, the overlap of different categories
was alleviated, and the boundaries of different categories
became clearer. This improvement is thanks to the effective
uncertainty estimation capability of the proposed method.

B.7. Additional Counter-intuitive Problem Analysis

To further investigate the counter-intuitive problem in Evi-
dence Deep Learning (EDL) [24], we calculate the uncer-
tainty and entropy of the classification results for EDL and
our method on the image modality of the NUS-WIDE-10K
and XMediaNet datasets’ testing set. Specifically, for a fair
comparison, we use the method that replaces Fuzzy Multi-
modal Learning with EDL and removes normalization for
representations in the common space to output the evidence
in the range [0,+∞].

B.7.1. Evaluation Metric
To evaluate the conflict of the prediction, we introduce the
entropy (H) of the classification results:

H(pj
i ) =

K∑
k=1

−pjik ·ln (p
j
ik)−(1−pjik)·ln (1− pjik), (17)

where pj
i = [pji1, p

j
i2, ..., p

j
ik],

∑K
k=1 p

j
ik = 1, and pjik rep-

resents classification probability of i-th sample of the j-th
modality for k-th category. The more uniform the proba-
bility distribution, the greater the entropy, and it reaches its
maximum value when the probability distribution is com-
pletely uniform, i.e., ∀pjik = 1

K . Therefore, the entropy is
a conflicting evaluation metric that measures the conflict of
the prediction, higher entropy reflects higher conflict. For a
fair comparison, the classification probability pjik in EDL is
calculated by:

pjik =
ejik∑K
k=1 e

j
ik

, (18)

where ejik represents the evidence of the i-th sample of j-th
modality for the k-th category. For our method, the pjik is
calculated by:

pjik =
mj

ik∑K
k=1 m

j
ik

, (19)

where mj
ik represents the membership degree of the i-th

sample of j-th modality for the k-th category.
The uncertainty (u) of classification results in EDL is

calculated by

uj
i =

K∑K
k=1 e

j
ik +K

, (20)

where K is the total number of categories. This formula
is dependent on total evidence and category count for un-
certainty estimation, overlooking how the evidence is dis-
tributed across each category.

B.7.2. Additional Analysis
We additionally compare EDL and our method on the NUS-
WIDE-10K dataset, which has 10 categories (significantly
fewer than the 200 categories in the XMediaNet dataset).
The experimental results, shown in Figure 5, lead to the fol-
lowing observations:
• Similar to the results observed on the XMediaNet dataset

in Section 4.5, EDL’s uncertainty is unrelated to en-
tropy. This suggests that uncertainty for conflicting and
non-discriminatory evidence (high entropy) is likely un-
derestimated. Conversely, the decision uncertainty esti-
mated by our method positively correlates with the en-
tropy, thereby achieving a more precise uncertainty esti-
mation.
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Figure 6. mAP@all across different deletion rates on the NUS-
WIDE-10K datasets.

• EDL’s uncertainty remains narrowly concentrated within
the range of 0.60–1.00, even with a relatively high clas-
sification accuracy of 0.721. This indicates that the total
evidence remains small compared to the number of cat-
egories, even with only 10 categories. Conversely, the
uncertainty estimated by our method spans the full range
[0, 1], indicating a more precise uncertainty estimation.

B.8. Parameter Analysis
To evaluate the influence of the trade-off hyper-parameter α
in the loss function, we present a plot in Figure 4 illustrating
the relationship between retrieval performance and α based
on the testing set of XMediaNet. As shown, performance
rises gradually from α = 0, peaks between 0.005 and 2,
and then declines. This trend underscores the role of Lmcl

in enhancing multimodal discrimination, aligning with our
ablation results in Section 4.6.

B.9. Uncertainty Merging Schemes Analysis
To verify this, we compared our merging scheme, 1− (1−
u1)(1 − u2), with the other two schemes (u1 + u2)/2 and
max(u1, u2) on the NUS-WIDE-10K dataset. The results,
shown in the Figure 6, demonstrate that our scheme outper-
forms others, particularly achieving remarkable superiority
in text-to-image retrieval.
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