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A. Point-to-Pixel Correspondence
We can obtain the index between points and image pixels

using the given extrinsic Tex matrix between sensors and

the camera’s intrinsic K matrix. Each point includes 3D

coordinates (x, y, z) and the obtained 2D projection pixel

coordinate Cpi =
[
ui vi

] ∈ R
HC×WC . To apply the

coordinate transformation, we add a fourth column to turn

it into a 4D vector, making the equation homogeneous. The

projection process is described as follows:

Zi
Cpi = KTex

Lpi

= K[R | t] [ xi yi zi 1
]T

,
(9)

Tex =

[
R t
0 1

]
, (10)

where Lpi and Cpi are the corresponding 3D point coordi-

nates and image pixel coordinates, and R and t represent

the rotation matrix and the translation vector in the trans-

formation matrix Tex , Zi is the depth of the 3D point.

B. Further Implementation Details
In this section, we further elaborate on the implementation

details of our SDG-OCC.

Evaluation Metrics. To evaluate the performance of our

method, we use the Mean Intersection over Union (mIoU)

over all classes for evaluation, which quantifies the overlap

between actual and predicted values relative to their com-

bined set. It is calculated by

mIoU =
1

N

N∑
c=1

IoUc =
1

N

N∑
c=1

TPc

TPc + FPc + FNc
,

(11)

where TPc, FNc, FPc denote true positives, false nega-

tives, and false positives, respectively. After averaging the

IoU values per class, the primary evaluation metric for se-

mantic segmentation, mIoU, is derived.

Training Details. The image size is adjusted to 256×704

with normalization, padding and random flipping for im-

age augmentation. To enhance performance, an exponential

moving average (EMA) hook is adopted. Test-time aug-

mentation techniques are not employed for BEV augmenta-

tion.

Loss Function. During training, we use a total of five

different loss functions:

L =
λdepthLdepth + λsegLseg + λptsLpts

+λmask-occLmask-occ + λklLdistill
, (12)

Fusion Method IoU(%) mIoU(%) FLOPs(G) Params(M)

SDG-FB 95.26 51.32 1159 92.1

SDG-FA 95.35 51.66 1162 92.9

SDG-KL 95.26 50.16 1067 57.9

Table 6. The ablation study on the fusion strategies.SDG-FB rep-

resents fusion after the BEV encoder, SDG-FA represents fusion

before the BEV encoder,SDG-KL represents fusion and distilla-

tion.

Method IoU(%) mIoU(%) FLOPs(G) Params(M) Time(ms)

img† 94.62 48.51 1067 57.9 83

img+lidar 95.35 51.66 1162 92.9 133

img†+lidar 95.48 51.71 2251 100.48 217

Table 7. The ablation study on the temporal fusion. † represents

the temporal fusion module for multi-frame images.

where Ldepth and Lseg represent the losses for depth esti-

mation and image semantic segmentation in the view trans-

formation, both using cross-entropy loss. Lpts denotes

the voxel supervision loss based on the target scale in Li-

DAR segmentation, integrating both Lovasz loss and cross-

entropy loss. Lmask-occ is the loss between the predicted oc-

cupancy grid and the ground truth (GT), employing masked

cross-entropy loss. Ldistill is the loss function for knowl-

edge distillation, representing the weight ratio of unidi-

rectional knowledge transfer from multimodal to unimodal

representations, where α = β=1.0. And we set the hyper-

parameters to λdepth = 0.05 and λseg = 0.5 for the depth

and segmentation losses, respectively, and additionally in-

clude weights λpts=λmask-occ=λkl=1.0 to balance their con-

tributions in the overall loss function.

C. Further Experiments

In this section, we provide more experiments of our pro-

posed method.

Feature Fusion Strategies. The feature fusion strate-

gies of the feature fusion has a significant impact on the

final performance. We conducte experiments on the image

BEV features obtained from the initial view transformation

and those processed by the BEV encoder. According to the

results in Tab. 6, applying the encoder before fusion and

distillation yields better performance.

Effectiveness of Temporal Fusion. Temporal augmen-

tation is a crucial technique for enhancing 3D perception

performance. While it introduces multi-frame informa-

tion, it causes only a small increase in memory overhead

yet brings substantial performance improvements. To vali-

date the effectiveness of temporal fusion, we conducte ex-



translations (m) rotations (◦) IoU↑ mIoU↑
0.1 1 -1.4% -0.12%

Table 8. Random perturbation on the matrix

method IoU mIoU

Baseline+FOAD 94.49 % 43.51%
Baseline+Fusion 94.74% 44.92%

Table 9. Ablation experiment on the neighborhood attention

periments using common temporal fusion methods from

BevStereo, with results shown in Tab. 7. Integrating tem-

poral information into camera-only models yields a no-

ticeable performance improvement with minimal compu-

tational overhead and a small compromise in processing

speed. However, when multimodal data is further integrated

with temporal information, the improvement becomes neg-

ligible, indicating a potential intrinsic coupling between the

temporal dynamics of multi-frame image sequences and Li-

DAR information.

Sensitivity to intrinsic and extrinsic. LSS methods

are sensitive to both intrinsic and extrinsic factors due to

the unidirectional mapping between image pixels and 3D

points. Any misalignment in the intrinsic parameters of the

camera or the extrinsic parameters of the 3D scene can lead

to significant errors. In contrast, our approach leverages co-

points from LiDAR as priors and employs bidirectional pro-

jection between 3D points and image pixels. The perturba-

tions in the transformation matrix have minimal impact on

the bidirectional projection process, resulting in a more sta-

ble and robust mapping. Random perturbations, including

translations and rotations (see Tab. 8), demonstrate that our

method maintains minimal performance degradation, high-

lighting its robustness.

Ablation Study on the Fusion-Distillation Module.

We conducted ablation experiments on the baseline, sep-

arately for the performance-based fusion method and the

speed-based distillation method. The results are shown in

Tab. 9, where it can be observed that the fusion-based

method performs slightly better than the fusion-distillation

method.

D. Visualization

In this section, we provide more visualization results of our

proposed method.

Visualization on Occluded Scenes. To validate the ro-

bustness of our method in handling occluded scenes, we

present additional visual results on both OCC3D-nuScenes

and Openocc-nuScenes dataset. As shown in the first scene

in Fig. 8, our method is able to detect pedestrians that are

partially occluded. As shown in the second scene, our ap-

proach performs well in identifying vehicles that are largely

occluded by other vehicles.

Visualization on Low-light Scenes. To validate the ro-

bustness of our method in handling low-light environments,

we present additional visual results. As illustrated in the

Fig. 9, on the OCC3D-nuScenes, our model demonstrates

the capability to recognize small objects, such as pedestri-

ans and motorcycles, in low-light scenes, and it can effec-

tively detect motorcycles at a considerable distance.
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Figure 8. Visualizations for occlusion on OCC3D-nuScenes validation set. For each scene, the six images in the “Input Images” line left

are the inputs to our model captured by font-left, front, front-right, back-right, back, and back-right cameras. The six images in the “Preds”
line left denote our prediction results with the corresponding views as the inputs. The two images on the right provide a global view of our

predictions. The two images in the “GT” line provide a global view of ground truth.
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Figure 9. Visualizations for low-light environments on OCC3D-nuScenes validation set.


