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Supplementary Material

1. Additional implementation details
In this section, we provide additional implementation de-
tails of our UNIC-Adapter.

1.1. Model Architecture
As described in the main paper, our UNIC-Adapter shares
the same architecture as the SD3 medium model [2] and is
initialized using the parameters of the SD3 medium. Specif-
ically, our UNIC-Adapter consists of 24 MM-DiT blocks,
with each block containing two AdaLayerNormZero lay-
ers, one Attention layer, and two Feed-Forward layers. To
reduce the number of trainable parameters, we freeze the
parameters of the Feed-Forward layers and only train the
remaining layers.

1.2. Training Details
The dataset mixing ratios are set as follows: pixel-level
spatial control: 0.4, subject-driven image generation: 0.5,
and style-image-based image generation: 0.1. For subject-
driven image generation, the background of the subject im-
ages is set to white. The input images are first resized so
that the shorter side is 512 pixels, and then they are ran-
domly cropped to a resolution of 512 × 512. To enable
classifier-free guidance, for pixel-level spatial control, we
use a probability of 0.15 to drop the text prompt. For the
other two tasks, we use the following probabilities: 0.05 to
drop the text prompt, 0.05 to drop both the task instruction
and the conditional image simultaneously, and 0.05 to drop
the text prompt, task instruction, and conditional image si-
multaneously. Our UNIC-Adapter is trained using the same
loss function as SD3 medium [2].

1.3. Inference Details
During inference, we use the same sampling schedule as
SD3, with the sampling step set to 28. We employ classifier-
free guidance based on three conditions: the text prompt
ctxt, the task instruction cist, and the conditional image
ccon. The classifier-free guidance is performed as follows:

eθ(zt, ctxt, cist, ccon) = eθ(zt,∅,∅,∅)

+ sc · (eθ(zt,∅, cist, ccon)− eθ(zt,∅,∅,∅))

+ st · (eθ(zt, ctxt, cist, ccon)− eθ(zt,∅, cist, ccon))

(1)

where eθ denotes the model, zt denotes the image latents,
∅ denotes the fixed null value, sc is the scale for image-
instruction guidance, and st is the scale for text prompt
guidance. For pixel-level spatial control, sc and st are set

to 1.3 and 3.0, respectively. For subject-driven image gen-
eration, sc and st are set to 1.2 and 7.5, respectively. For
style-image-based generation, sc and st are set to 3.0 and
6.0, respectively.

2. Additional Experimental Results
In this section, we present additional experimental results,
including both quantitative ablation studies and qualitative
evaluations.

2.1. More Quantitative Results
Importance of Cross-modal Interaction Our UNIC-
Adapter leverages the MM-DiT block, where task instruc-
tion features and conditional image features mutually attend
to each other. To investigate the importance of this cross-
modal interaction, we perform an experiment by modify-
ing the attention process in Equation (4) of the main paper
to align with the DiT block formulation [1]. The modified
process is defined as follows:

Kist = Lk
ist(Zist), Vist = Lv

ist(Zist),

Qcon = Lq
con(Zcon),Kcon = Lk

con(Zcon), Vcon = Lv
con(Zcon),

Z
′
con = Attn(Qcon, [Kist∥Kcon], [Vist∥Vcon]),

(2)

where the task instruction features no longer attend to con-
ditional image features and instead act solely as key and
value features without being updated. As shown in Table 1,
removing cross-modal interaction leads to a decline in per-
formance across several metrics, emphasizing the advan-
tage of such interaction between task instruction features
and conditional image features.
Comparison with UniControl. We conducted further
quantitative evaluations using CLIP-I and FID metrics
across 5,000 images within the rest eight pixel-level tasks.
As presented in Table 2, our UNIC-Adapter consistently
outperforms UniControl [5], the only comparative method
spanning these tasks.
Effect of the Data Ratios. Table 3 shows how multi-task
training affects performance by reporting the score on three
pixel-level tasks (Canny, HED, and Depth): With an equal
number of training steps, models trained on more tasks per-
form slightly worse than those trained on 3 pixel-level tasks.
And varying the data ratios between 12 pixel-level and sub-
ject tasks has minimal impact on performance.

2.2. Scalability Experiments
Our UNIC-Adapter demonstrates remarkable flexibility in
accommodating various conditional images and instruc-



Method Canny HED Seg. Depth Subject-Driven
(F1 Score↑) (SSIM↑) (mIoU↑) (RMSE↓) DINO↑ CLIP-I↑ CLIP-T↑

UNIC-Adapter 37.95 0.8420 33.32 32.25 0.784 0.829 0.309
w/o cross-modal 37.71 0.8284 31.73 31.95 0.772 0.821 0.310

Table 1. Results of UNIC-Adapter with and without cross-modal interaction between task instruction features and conditional image
features on pixel-level control tasks and subject-driven generation task.

Method Bbox Blur Colorization Sketch Inpainting Normal Skeleton Outpainting

UniControl 78.3/17.5 94.7/9.3 91.9/10.0 79.2/21.4 92.6/10.3 84.3/16.7 78.6/17.9 86.6/13.5
Ours 79.0/17.0 96.0/11.3 93.8/8.1 86.5/15.5 94.9/8.2 85.7/14.1 79.5/17.0 89.2/9.7

Table 2. CLIP-I(↑) / FID(↓) scores on eight pixel-level control tasks.

Task 3 pixel-level 12 pixel-level 12 pixel-level and subject tasks
metrics tasks tasks (0.75:0.25) (0.5:0.5) (0.25:0.75)

Canny (F1 Score↑) 41.66 38.74 35.65 36.17 36.90
HED (SSIM↑) 85.93 85.76 82.46 82.83 81.93
Depth (RMSE↓) 30.63 32.36 31.07 31.50 32.29

Table 3. Results with different training tasks and data mixing ratios.

tions. To further assess its scalability, we conducted ex-
periments involving three distinct types of data: multiple
conditional images, image editing, and subject-driven gen-
eration using subject images with backgrounds.

Multiple Conditional Images. As outlined in Eq. 5
of the main paper, our UNIC-Adapter inherently supports
multiple conditional images by aggregating the attention re-
sults from each conditional input. Figure 1 illustrates zero-
shot inference results using multiple conditional images,
achieved with a model trained on single-condition input.
This demonstrates the model’s potential for enhanced per-
formance when trained on a large-scale dataset with multi-
ple conditional images.

Image Editing. We trained our model on the OmniEdit
dataset [7], enabling it to receive both the original image
and an instruction prompt detailing the desired modifica-
tions. Figure 2 demonstrates the effective editing capabili-
ties of our UNIC-Adapter. In the future, we could further
integrate the image editing task along with all pixel-level
and subject-specific tasks into our framework.

Subject-driven Generation. In the subject-driven im-
age generation task, the generated subjects exhibit limited
variations in pose compared to the subject images, since the
subject image and target image originate from the same im-
age source, and the backgrounds in the subject image are
erased during training, as Kosmos-G [4] did. To showcase
that our model can also support subject-driven generation
using subject images with backgrounds, we fine-tuned it on
the Subjects200K dataset [6], which includes subject im-

ages with various backgrounds. As shown in Figure 3, our
model effectively handles data with backgrounds and has
comparable capabilities to OmniGen [8], generating diverse
subject images across varying contexts during testing.

2.3. More Qualitative Results
Figures 4, 5, 6, and 7 showcase additional visualization re-
sults of our UNIC-Adapter across various controllable gen-
eration tasks.

3. Limitations and Future Work
In the experiments, all training images are resized and
cropped to a resolution of 512×512. As a result, our UNIC-
Adapter is limited in generating images with higher resolu-
tion, like 1024× 1024. This limitation can be addressed by
using high-resolution training images and keeping the orig-
inal aspect ratio, such as images with pixel areas equivalent
to 1024× 1024. Additionally, although our model can sup-
port image generation with multiple conditional images dur-
ing inference, it is limited by the training data which only
contain one image as the condition. In the future, we can
construct large-scale datasets with multiple conditional im-
ages to improve the capabilities. Furthermore, integrating
our UNIC-Adapter with state-of-the-art T2I models, such as
FLUX1.0-dev [3] and Stable Diffusion 3.5 Large [2], might
further enhance the controllability and performance of these
models.



Figure 1. Zero-shot inference results of our UNIC-Adapter with multiple conditions.

Figure 2. Image editing results of our UNIC-Adapter on OmniEdit test set.

Figure 3. Visualization results of OmniGen and our UNIC-Adapter on DreamBench. The first row is subject images with background,
while the second row is generated images.



Figure 4. Visualization results of our UNIC-Adapter on six pixel-level control tasks from the MultiGen-20M dataset. The odd rows show
different types of conditional images, while the even rows display the corresponding generated images.



Figure 5. Visualization results of our UNIC-Adapter on six pixel-level control tasks from the MultiGen-20M dataset. The odd rows show
different types of conditional images, while the even rows display the corresponding generated images.



Figure 6. Visualization results of our UNIC-Adapter on DreamBench for subject-driven generation. The first column displays the subject
images, while the other columns show the generated images based on different prompts.



Figure 7. Visualization results of our UNIC-Adapter on style-image-based T2I generation. The first row shows the reference style images,
and each subsequent row contains images generated from the same prompt, influenced by different style images.
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