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Supplementary Material

In this appendix, we present our ablation study in Sec. A,
and provide additional results and qualitative illustrations
in Sec. B as well as further analysis C. We then provide
implementation and technical details in Sec. D, and some
technical elements and proofs in Sec. E.

A. Ablation Study

We conduct an ablation study on the Riemannian Flow
Matching approach to evaluate the impact of our design
choices, and report the results in Tab. A.

• Guided Sampling. Guided sampling improves the
geoscore, but as shown in Figure 7 of the main paper,
leads to low likelihood scores due to overconfident pre-
dictions.

• Single sampling without guidance. We do not add
any guidance (ω = 0 in Eq. 13). We observe a loss of
geoscore of 182 GeoScore point (3485 vs 3767) , but
the NLL is better (-1.8 vs 33.1). Guidance improves
the geolocation performance but significantly worsen the
probabilistic prediction.

• Ensemble sampling. We sample and denoise 32 random
points and select the prediction with highest likelihood.
While this approach yields the best performance for the
distribution estimation metrics, it is significantly more
computationally expensive due to the necessity of gen-
erating and evaluating multiple samples. In practice,
this inflates the prediction time per image from approxi-
mately 2 milliseconds to 72 milliseconds..

• Standard Sigmoid Scheduler. We replace our proposed
scheduler defined in Eq.15 of the main paper by the
standard not skewed sigmoid scheduler with α = −3
and β = 3. This modification increases the geoscore
but decreases the quality of the predicted densities as
measurs by the generative metrics. The standard sigmoid
does not allocate sufficient emphasis to the earlier stages
of the diffusion process (t close to 0: low noose regime),
which are crucial for fine-grained localization.

• Linear Sigmoid Scheduler. We replace our proposed
scheduler defined in Eq.15 of the main paper by a linear
scheduler. This modification decreases both the geoscore
and the quality of the predicted densities.

B. Additional Results

We present additional qualitative and quantitative results.
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Figure A. Density Coverage curves on OSV-5M.

Qualitative Illustrations. We provide a detailed illustra-
tion of our network in Fig. B. We observe that the paramet-
ric methods vMF and vMF mixture fail to capture highly
multimodal distributions. In contrast, our distributions are
non-parametric and can predict highly complex spatial dis-
tributions. The vMF mixture is collapse to a single vMF, as
we observed for a majority of the prediction.

We observe that both flow matching approaches give
results that visually close. Note however that the value of
the likelihoods are not comparable as both models are not
embedded in the same metric space. The generative metrics
detailed in Tab. B show that the Riemannian model fits the
unconditioned distribution better at a fine-grained scale.

Detailed Quantitative Results. We provide in Tab. B the
full generative metrics for the OSV-5M and YFCC datasets.
Similarly to what we observed for iNat21 in the main paper,
flow matching and particularly Riemannian flow matching
leads to the most faithful predicted distributions of samples.

C. Extended Analysis
We extend the analysis of our models’ performance.

Speed. Iterative methods, such as flow matching, come
with overhead compared to single-forward-pass baselines.
However, our approach needs to encode the image only once.
The iterative inference then operates solely on the image
embedding and the coordinates, which is comparatively in-
expensive. In practice, encoding an image takes about 20
ms, while each denoising step takes roughly 5 µs when aver-
aged across 10,000 images. Even when using 16 steps, the



(a) Image from YFCC (b) Diffusion in R3 (c) Flow Matching in R3

(d) Riemannian Flow Matching in S2 (e) von Mishes-Fisher (f) von Mishes-Fisher Mixture

Figure B. Qualitative Illustration. We represent the predicted distributions predicted by different models for the same image, taken in an
NFL stadium in Maryland, USA.

Table A. Ablation Study. We estimate the impact of different designs. We consider a Riemannian diffusion model and evaluate on
OpenStreetView-5M.

Geoscore ↑ NLL ↓ precision ↑ recall ↑ density ↑ coverage ↑

Guided sampling 3746.79 33.1 0.841 0.896 0.797 0.590

Single sampling 3485.88 -1.81 0.844 0.924 0.790 0.560
Ensemble sampling 3588.25 -4.31 0.899 0.785 0.881 0.537

Linear sigmoid 3734.84 -1.28 0.775 0.931 0.687 0.536
Standard sigmoid 3767.21 -1.51 0.827 0.913 0.765 0.565

overhead is only about 0.4%.

Interpreting Generative Metrics. Precision and recall in
generative models can be confusing as they have different
definitions and behaviors than their equivalent in a retrieval
context. In a generative context, uniform baselines achieve
high recall scores because they cover the entire support of
the target distribution. To address this, previous work [4]
suggests using density and coverage as more informative
metrics. We propose to examine the density/coverage trade-
off by sorting the predicted locations by decreasing likeli-
hood and computing these metrics over the first entries in the
list. The resulting curve is shown in Fig. A. As we can see,
the AUC of our RFM model is well above other methods,
maintaining a high density as the coverage increases.

Interpreting Localizability. The localizability score—
expressed as an average negative entropy in bits per dimen-
sion [2, 7]—can be difficult to interpret in absolute terms.
We primarily use it for comparative purposes across images
or models. Nevertheless, we can offer three reference points:

• Absolute Lower Bound. A uniform distribution over
the sphere sets a lower bound for localizability of
− 1

3 log(4π) = −1.22.
• Empirical Lower Bound. The unconditional distribu-

tion learned by our model has a localizability of −0.54,
which is the lowest possible localizability our model can
predict.

• Empirical Upper Bound. While there is no strict the-
oretical upper limit to the localizability, the image of
the Eiffel tower in Fig 6c reached the highest observed
localizability in our experiments with 1.75.



Table B. Generative Metrics. We evaluate the quality of the predicted distributions with generated metrics for OSV-5M and YFCC for the
unconditional distribution.

OSV-5M YFCC

precision ↑ recall ↑ density ↑ coverage ↑ precision ↑ recall ↑ density ↑ coverage ↑

Uniform 0.29 0.98 0.21 0.21 0.59 0.99 0.38 0.22
vMF Regression 0.598 0.982 0.499 0.446 0.667 0.993 0.542 0.599
vMF Mixture 0.513 0.980 0.422 0.358 0.626 0.988 0.474 0.498
RFlowMatch S2 (ours) 0.841 0.896 0.797 0.590 0.957 0.952 1.060 0.926

Diffusion R3 (ours) 0.822 0.916 0.752 0.568 0.938 0.959 0.959 0.837
FlowMatch R3 (ours) 0.845 0.907 0.799 0.575 0.953 0.959 1.037 0.920

D. Implementation Details

Baseline Details. We use the same backbone and image
encoder as in our model for all baselines. We adapt them to
the baselines with two modifications: (i) The missing inputs
(noisy coordinates and scheduler) are replaced by learnable
parameters. (ii) We replace the final prediction head with
MLPs that predict the parameters of the von Mises-Fisher
(vMF) distribution: the mean direction µ ∈ S2 (using L2

normalization) and the concentration parameter κ > 0 (using
a softplus activation).

For the mixture of vMF model, we use K = 3 vMF
distributions. The µ and κ heads now predict three sets of
parameters, and the mixture weights are predicted by another
dedicated head (with a softmax activation).

Architecture Details. Our model architecture, illustrated
in Fig. C, consists of several key components:

• Input Processing: The model takes three inputs: the
current coordinate xt, an image embedding c, and the
noise level κ(t).

• Initial Transformation: The coordinate xt first passes
through a linear layer that expands the dimension from 3
to d, followed by an ADA-LN layer that conditions on
parameters α, β.

• Main Processing Block: The core of the network
(shown in gray) is repeated N times and consists of:

– A linear layer that expands dimension from d to 4d
– A GELU activation function
– A linear layer that reduces dimension from 4d to d
– An ADA-LN layer conditioned on α, β

• AdaLN: The AdaLN layer is a conditional layer normal-
ization that scales and shifts the input based on the image
features:

AdaLN(x) = γ ⊙ x− µ

σ
+ β (A)

where µ, σ are the mean and standard deviation of x on
the feature dimension, and γ, β are learnable parameters.

• Skip Connections: Each processing block has a skip
connection path that:

– Skips the processing block and directly connects
the input to the output to allow a better gradient
flow.

– Is modulated by a gating parameter γ that controls
how much of the block output is added to the main
path.

This gated skip connection allows the network to adap-
tively control information flow around each processing
block.

• Output Head: The final prediction is obtained through
a linear layer that maps to the target dimension d 7→ 3.

• Time step Conditioning: The noise level κ(t) is in-
corporated through addition to the conditioning of the
AdaLN layers.

We use N = 12 blocks of dimension d = 512 for OSV-
5M and YFCC-100M and blocks of dimension d = 256 for
iNat21.

Optimization. We train our models for 1M steps with a
batch size of 1024, using the Lamb optimizer [12] with a
learning rate of 8 ∗ 10−4. We use a warmup of 500 steps and
a cosine decay learning rate schedule. We use an EMA of
0.999 for the model weights. For OSV-5M and YFCC-100M,
we use a weight decay of 0.05 and for iNaturalist we use
0.1. We drop out 10% of the time the conditioning image
embedding to allow classifier free guidance.

Metrics.
• Precision and Recall: We adapt the classic generation

metrics of precision and recall [4] to our spatial setting
by considering geographic proximity.
We consider a set X of true locations, and a set Y of
locations sampled from the unconditional distribution
predicted by our model. For Z a set of locations (X or
Y ) and z ∈ Z, we define B(z, Z) the ball of S2 centered
on z and with radius equal to the k-th nearest neighbour
of z in Z. We can then define the approximated manifold
of ta et of locations:

manifold(Z) :=
⋃
z∈Z

B(z, Z) . (B)
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Figure C. Architecture. Our model takes as input the current
coordinate xt, the image embedding ϕ(c), and the noise level
κ(t). We use this architecture for all our formulations, including
deterministic baselines.

We now define the precision and recall as the proportion
of predicted (resp. true) locations within the manifold of
true (resp. predicted) locations:

precision :=
1

| Y |
∑
y∈Y

[y ∈ manifold(X)] (C)

recall :=
1

| X |
∑
x∈X

[x ∈ manifold(Y )] , (D)

where [P ] is the Iverson bracket, equal to one is the
statement P is true and 0 otherwise. Throughout this
paper, we select the number of neighbours to k = 3.

• Density and Coverage: Naeem et al. [6] introduce more
reliable versions of the precision and recall metrics, par-
ticularly for distributions containing outliers. We pro-
pose to adapt these metrics to our setting. The density
measures how closely the predicted locations Y cluster

around the true location X :

density :=
1

k | Y |
∑
y∈Y

∑
x∈X

[y ∈ B(x,X)] . (E)

The recall metrics can be misleading high for predicted
manifolds that cover uniformly the embeddings space,
which is particularly problematic on a low- dimensional
space such as S2: the uniform distribution has a recall of
0.98 on OSV-5M. Coverage better captures how well the
generated distribution spans the true data modes without
rewarding such overestimation by assessing how well
the predicted distributions span the true data:

coverage :=
1

| X |
∑
x∈X

[∃y ∈ Y ∩ B(x,X)] . (F)

E. Technical Details

In this section, we present details on Riemannian geome-
try on the sphere, and a proof sketch of Proposition 1 and
elements on its generalization.

Spherical Geometry. The logarithmic map logx maps a
point y ∈ S2 onto Tx, the tangent space at point x [8]:

logx(y) =
θ

sin θ
(y − cos θx) , (G)

where θ = arccos(⟨x, y⟩) is the angle between x and y. The
exponential map expx of a point x ∈ S2 maps a tangent
vector v ∈ Tx back onto th sphere:

expx(v) = cos(∥v∥)x+
sin(∥v∥)

∥v∥
v , (H)

where ∥v∥ is the Euclidean norm of v.

Proof of Prop 1. Please find here the corrected proposition
and its proof. We now propose a short proof of Proposition 1,
inspired by [5, Appendix C]

Proposition 1. Given a location y ∈ S2 and an image c,
consider solving the following ordinary differential equation
system for t from 0 to 1:

d

dt

[
x(t)
f(t)

]
=

[
ψ(x(t) | c)

−div ψ(x(t) | c)

]
with

[
x(0)
f(0)

]
=

[
y
0

]
,

(I)

Then the log-probability density of y given c is: log p(y |
c) = log pϵ(x(1) | c) + f(1) where pϵ is the distribution
of the noise ϵ, and f(t) accumulates the divergence of the
velocity field along the trajectory.



Proof. The logarithmic mass conservation theorem [1, 11]
writes:

d

dt
log p(xt | c) + div v(xt) = 0 . (J)

After training the network ψ to regress v(xt), we can
substitute ψ(xt | c) to v(xt) and obtain:

d

dt
log p(x(t) | c) + div ψ(x(t) | c) = 0 . (K)

We integrate from 0 to 1:

log p(x1 | c)− log p(x(0) | c) = −
∫ 1

0

div ψ(x(t) | c) .

(L)

We thus have the following system:

d

dt

[
x(t)
f(t)

]
=

[
ψ(x(t) | c)

−div ψ(x(t) | c)

]
(M)

with initial condition:

[
x(0)
f(0)

]
=

[
y
0

]
. (N)

Where accumulates the divergence of the velocity field
along the trajectory: f(t) =

∫ t

0
divψ(x(t) | c) and hence

f(0) = 0. The system in Eq. (M) admits only one solution
for all t ∈ [0, 1]. Equation (O) gives us that:

log p(x0 | c) = log p(x(1) | c)− f(1) . (O)

The probability log p(x(1) | c) is given directly by the dis-
tribution of the initial noise,a nd f(1) is the solution of the
system for f at t = 1.

Extending Prop 1. Prop 1 can be extended to Rieme-
nian Flow Matching simply by projecting the iterate onto
the sphere at each step when iteratively solving the ODE
Eq. (M).
For diffusion models, we do not have direct access to the
velocity field. However, according to Song et al. [10, Section
D.2], for a stochastic differential equation of the form:

dx = f(x, t)dt+G(x, t)dω (P)

where dω is a Wiener process [3], the velocity field Ψ(x, t)
can be expressed as:

v(x, t) = f(x, t)− 1

2
∇ · [G(x, t)G(x, t)T ]

− 1

2
G(x, t)G(x, t)T∇ log pt(xt | x0, c) (Q)

In our case, we defined our forward noising process as:

xt =
√

1− κ(t)x0 +
√
κ(t)ϵ, ϵ ∼ N (0, I) . (R)

This leads us to choose:

f(x, t) = −1

2
xβ(t) (S)

G(x, t) =
√
β(t) , (T)

where β(t) represents the infinitesimal change in xt variation
between t and t+ δt: β(t) = xt+δt − xt. According to [10,
Eq 29], this process yields:

xt ∼ N
(
x0e

− 1
2

∫ t
0
β(s)ds,

(
1− e−

∫ t
0
β(s)ds

)
I
)

(U)

which implies that [9, X]:

β(t) =
d log(κ(t))

dt
(V)

Finally, we can replace ∇ log pt(xt | x0, c) with
−ϵθ(xt, t, c) in Eq. (Q), as our model learns to predict the
noise added to the data. This yields the following velocity
field:

ψ(x, t) = −1

2
β(t)(x− ϵθ(x, t, c)) . (W)
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