
A. Eval3D Qualitative Analysis
Geometric Consistency: Fig. 8 illustrate the geometric
artifacts identified by our proposed geometric consistency
metric. By comparing the image-based normals with the
rendered geometric normals, the metric effectively high-
lights texture-geometry mis-alignments. For instance, see
the misalignment between the corresponding texture map
and the underlying geometry in the taco fillings, the eggs
on the nest, the ramen bowl and the salmon examples of
Fig. 8. Such misalignment are evident when comparing
the "Algorithm generation" column with the "Algorithm
rendered normal" column. Among the evaluated text-to-
3D algorithms, ProlificDreamer exhibits the most significant
texture-geometry misalignments. While MVDream’s gener-
ations are aesthetically appealing, they sometimes display
noisy, non-smooth geometries with holes and cavities, such
as the flower pot in the first row (right) of Figure 8.

Structural Consistency: Fig. 18 qualitatively highlights
the structural consistency metric. The first column of the
figure shows renderings of the generated 3D assets at
0�, 90�, 180� and 270�. The next two columns present novel
view predictions by the zero123 algorithm, using the 0� and
90� renderings of the generated assets, respectively.

The second and third examples demonstrate faulty genera-
tions that suffer from the well-known Janus issue (multi-head
reconstructions), where all four viewpoints (in the second
and third rows) contain the heads of a chimpanzee and an
orange cat, respectively. While the text-based 3D gener-
ation algorithm struggled, the image-based novel-view
synthesis algorithm successfully identified the failure by
making multi-view consistent predictions (columns 2, 3).

Since Zero123 relies on one of the renderings of the gen-
erated asset as a reference viewpoint, it can potentially fail
to generate consistent predictions if the reference viewpoint
contains artifacts or is confusing (e.g., row 3, column 2, gen-
erated using the 90� rendering of the generated 3D asset in
column 1). Rows 1 and 4 showcase examples where good
generations are well-aligned with the proposed structural
consistency metric, demonstrating qualitative alignment be-
tween algorithm generations and zero123 predictions.

Semantic Consistency: Fig. 19 demonstrates our pro-
posed semantic consistency metric. Similar to the geometric
consistency metric, the semantic consistency metric is com-
puted directly in the 3D geometric space (as the percentage
of semantically consistent mesh vertices), allowing us to
localize artifacts in the 3D space. The figure side-by-side
compares the generated textured asset with the underlying
geometry in the first two columns, while the last column
depicts the semantic inconsistency map (bright regions rep-
resent mesh vertices with high standard deviation of the back-

Rendered Images at various viewpoints

Predicted images with Foundation models (Zero-123)

Figure 7. Structural consistency: We compare the rendered im-
ages with those predicted by Zero-123 [29]. A structurally coherent
object should maintain consistent appearance across different view-
points, allowing one to predict its appearance from another angle. If
the predictions & renderings differ significantly, it likely indicates
an issue. In this figure, generated cat has multiple faces. Since a
normal cat only has one face, results from Zero-123 [29] show
noticeable inconsistencies, allowing us to localize the structural
incoherence.

projected DINO features from neighboring viewpoints).
The proposed metric effectively localizes artifacts such as

Janus issues (multiple dog noses in row 1, multiple pigeon
faces in row 4), extraneous geometry (monkey’s hand in
row 2), noisy texture-geometry alignment (in row 3), and
arbitrary floaters in the final row of the figure. Moreover,
since DINO features strongly correlate with the semantic
class of the underlying image, faulty 3D generations whose
semantic interpretation changes with viewpoints are often
highlighted by the proposed metric (see Magic3D generation
in row 2 of Fig. 21, which has a low semantic consistency
score of 55.2%).

Text-3D Alignment: The alignment of the input text to the
generated 3D asset is crucial as it demonstrates how well the
3D generation algorithm follows the input instructions. In
Fig. 9, we highlight the text-3D alignment of several 3D gen-
erations. While some of these generations are aesthetically
appealing, they fail to satisfy the user’s textual instructions
(e.g., the first and second generations in the first row). In
other cases, certain objects or entities mentioned in the in-
put prompt are missing (e.g., the missing shovel in row 2,
column 1, and only two apples generated in column 2).

Despite demonstrating strong text-3D alignment overall,
the generated frog with a mechanical heart (row1, column
3) displays an example where SDS-optimized generations
can find unexpected or undesirable ways to satisfy the text
prompt.
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3D Rendered Image 3D Rendered Normal Image-based Normal Normal Metric (Ours)

Figure 6: Normal Metric highlights the discrepancy between the texture and the geometry (comparing
geometrically rendered normal w/ normal generated by image-based normal estimator)
Shivam: Normal Metric: Work in progress, highlight regions to focus on, like missing hand of knight
mouse in rendered normal, hollow bunny face
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Figure 8. Geometric Consistency Metric evaluates texture-geometry alignment by comparing geometrically-rendered normals with
image-based Depth-Anything normals. We back-project the consistency estimates onto the 3D mesh to localize 3D artifacts (missing ramen
bowl, missing salmon, incorrect vegetable geometry). Bright greenish-red (or cyan) spots = high inconsistency regions , darker-blue regions
= consistent areas (we use jet color mode).

B. Text-3D Comparison using Eval3D

We compare text-3D generations from multiple algorithms
for two prompts in Fig. 20 and Fig. 21. For both the
prompts, Magic3D [28] and DreamFusion [41] generate
overly smooth and simplified geometries, which compro-
mise the aesthetic appeal of the assets. This gets reflected
quantitatively in their high geometric consistency scores and
qualitatively in the corresponding geometric inconsistency
maps as shown in the second column (bright spots indi-
cate higher inconsistency, while darker-blue regions indicate
lower error).

For each algorithm’s generation in both figures, the se-
mantic consistency metric effectively localizes artifacts in
the 3D space. For example, ProlificDreamer exhibits Janus
issues, Magic3D shows semantically confusing renderings
of relatively thin geometries, and DreamFusion displays low
texture-geometry alignment in its blurry reconstructions. Fi-
nally, MVDream completely fails to satisfy the text prompt
in the first figure, generating a Michelangelo-style human
instead of a dog.

C. Eval3D Failure Cases

While the proposed 3D evaluation metrics align better than
current alternatives and offer an interpretable, fine-grained
solution to 3D evaluation, there are still some failure cases
that warrant future investigation. Fig. 10 demonstrates two
such failure cases for semantic consistency metric.

In Fig. 10, the semantic consistency metric successfully
localizes artifacts for both ProlificDreamer (regions with
Janus issues, i.e., intersecting multiple heads) and MVDream
(regions with poor texture-geometry alignment due to dog
fur-like texture). However, the quantitative semantic con-
sistency score for ProlificDreamer fails to align with hu-
man judgment for this particular prompt (while overall
Prolificdreamer-Human alignment using semantic consis-
tency metric equals 63%). We hypothesize that this is be-
cause the artifact is localized to a relatively thin region of
semantic confusion where multiple heads intersect, thereby
affecting the metric value less significantly. Another cause
of failure is the occlusion of geometric parts at certain view-
points, which potentially leads to different semantic inter-
pretations from those viewpoints, resulting in higher seman-
tic inconsistency values for such vertices (MVDream’s dog

13



A zoomed out DSLR photo of a 
beagle eating a donut

Text-3D Alignment = 33.3%Text-3D Alignment = 12.5% Text-3D Alignment = 100.0%

A colorful kite tangled in
branches of an oak tree, 
fabric fluttering in the wind

Frog with a translucent skin displaying a 
mechanical heart beating

Text-3D Alignment = 50.0%

a zoomed out photo of a rabbit 
digging a hole with a shovel

Text-3D Alignment = 80.0%

Four ripe apples in a basket

Text-3D Alignment = 100.0%

An ancient, weathered statue, now 
covered in a blanket of moss

Figure 9. Text-3D Alignment analyzes how well the generated 3D assets align with user text instructions. We leverage the open-sourced
LLaVA model to estimate text-3D alignment. The examples above showcase various scenarios: complete failure of text-3D alignment (first
two prompts), missing objects (e.g., the shovel in the fourth example, two apples in the fifth example), and perfect alignment for the last
column prompts.

nose).
Fig. 10 (right) highlights a particular scenario where

a Gaussian-splatting-based algorithm generates relatively
noisy and potentially out-of-distribution textures, making
it difficult for the DinoV2 model to derive any meaningful
semantic interpretation from the corresponding renderings.

D. Experimental Details
D.1. Training Details
We evaluated six text-to-3D and two image-to-3D algorithms
for Eval3D benchmark. For all algorithms, we leveraged
code and implementations from the Threestudio project [18]
(or its extensions). Note that Threestudio’s implementations
have some differences from the original works. We refer
readers to the "Notable differences from the paper" sections
corresponding to each algorithm on the Threestudio project
page. All our experiments were done on NVIDIA A40 GPUs.
Most compute cost are spent on generating 3D assets for
benchmarking, and the compute cost varies for different gen-
eration methods, ranging from 0.3 GPU hours (for Dream-
Fusion [41]) to 6 GPU hours (for ProlificDreamer [56]). For
evaluation, after rendering the mesh and 120 RGB images,
the majority of compute cost is spend on running the founda-
tion models, including LLaVA-7B [27], DINOv2 [39], and

Stable-Zero123 [1]. Altogether, when run parallelly, these
processes take about 5 minutes per 3D asset.

D.2. Hyper-parameter Selection

We follow standard practices by normalizing the object
within [�1, 1], sampling cameras around it, and rendering
256⇥ 256 images. Foundation models like DINO are robust
to varying resolutions. The threshold for each metric is de-
termined using a hold-out validation set, and the number of
views is selected empirically.

D.3. Mesh Extraction and Vertex Visibility

We use marching cubes or marching tetrahedra to extract
meshes from the learned density or tetrahedral fields (in
Magic3D). While this process may introduce mesh artifacts,
we find that, in practice, it has a limited effect on the seman-
tic consistency metric compared to inconsistencies caused
by other factors, such as the Janus effect. We only consider
vertices that are visible from at least five viewpoints. Vertex
visibility can be determined by rendering the mesh via raster-
ization. This helps avoid labeling spurious vertices (which
exhibit low DINO variance due to being visible in very few
frames) as consistent vertices.
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Human Annotation: 3D Plausible
Structural Consistency: 3D Plausible (with value = 84.1%)
Semantic Consistency: 3D Plausible (with value = 81.2%)
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MVDreamGaussian Splatting
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Semantic Consistency: 3D Plausible (with value = 61.8%)

Human Annotation: Not 3D Plausible
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Semantic Consistency: 3D Plausible (with value = 81.2%)

Evaluating 3D Plausibility

“A tiger waiter at a fancy restaurant”

Figure 10. Eval3D Semantic Consistency Failure Cases Potential Reasons for failures – Artifacts (intersection of multiple faces) being
localized to very thin regions; occlusion of geometric structures for certain viewpoints, making the overall geometry’s semantic interpretation
ambiguous; noisy gaussian splatting structures being too OOD for DINO model. (Zoom-in for best visualization)

D.4. Design of Structural Consistency Metric
Based on the observation that 3D generation algorithms typ-
ically perform well under small viewpoint shifts but struggle
with significant changes, we evaluate every 90� to balance
computational cost and effectiveness. The camera is posi-
tioned at a 70� elevation with varying azimuth angles to fully
capture the top and front viewpoints. Bottom viewpoints are
excluded, as they are often planar and semantically simpler,
allowing us to conserve computation. To aggregate the scores
across different inputs (e.g., 0� vs. 90�), we experimented
with both max and average. We find that while Zero123 is
strong, it is not perfect and may perform worse on some input
images due to noise. Taking the max enhances robustness to
this variability.

E. Eval3D Benchmark
Here we provide more details about the Eval3D benchmark
beyond what covered in the main paper experiments section.
Figure 12 contains the statistics calculated from these scene
graphs. The left histogram shows the number of prompts
that have a certain number of entities. The right shows the
statistics of the total number of semantic elements in a scene
graph. Figure 13 illustrates the frequencies of each semantic
element type. We also give the sub-category for entity and
attribute. Here “Entity whole” is the major objects (e.g.,
“horse”), and “Entity part” is part of a major object (e.g.,
“saddle on a horse”).

E.1. Human Annotations
Eval3D is annotated by 10 computer vision graduate students
who have been well-trained to do the task. We strictly follow
their institutions’ rules during training and annotation. All
annotators help for free and we really appreciate their effort.
The major potential participation risk is that some 3D assets
are so low-quality that they might be visually disturbing
to humans. We collect annotations for 160 prompts on 6

models and 4 evaluation criteria. The annotation guideline is
as follows:

Geometric Consistency: For each text prompt, we show
annotators videos of RGB and rendered surface normals,
placed side-by-side for all six algorithms. The annotator
needs to give each 3D asset a score between 0–9, focusing
on the texture alignment with the surface normal. We only
use the scores for pairwise comparison. Ties are allowed. The
annotation interface is shown in Fig. 17. The inter-annotator
agreement, in terms of pairwise agreement (i.e. the probabil-
ity that both annotators believe a 3D asset is better than the
other), is 86.8%.

Semantic and Structural Consistency: For each 3D asset,
we ask the annotator to judge its structural consistency or 3D
plausibility by showing then a rendered RGB video. We edu-
cate them about artifacts like Janus issues (corgi in Fig. 18),
fluctuating semantics (Fig. 19), arbitrary/incorrectly ren-
dered novel views (Fig. 18). The annotator chooses among
four options: yes, uncertain yes, uncertain no, and no. The
annotation interface is shown in Fig. 17. We compute the
inter-annotator agreement in two ways: (1) excluding the
examples where annotators answer “uncertain yes” or “un-
certain no”, then the pairwise agreement between annotators
is 97.2%. (2) if we consider “yes” and “uncertain yes” as
one class, “no” and “uncertain no” as the other class, then
the agreement is 83.1%.

Aesthetics: We use the same annotation template as for
geometric consistency. For each text prompt, we show ren-
dered RGB videos of 3D assets of all six algorithms. The
annotator needs to rank the generations based on whether a
3D asset is aesthetically pleasing, containing sharp, natural,
vivid, bright, and high-resolution textures. Ties are allowed.
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Text prompt = “A zoomed out DSLR photo 
of a beagle eating a donut”

Question: 
1. Is there a beagle?
2. Is there a donut?
3. Is the beagle eating 

the donut?
LlaMA/GPT4

Answers:
1. Yes
2. Yes
3. Yes

Text-based

Answers:
1. No
2. Yes
3. NoLLaVA/GPT-4o

Image-based
Answers:
1. No
2. Yes
3. No

Alignment rate: 33%Generated 3D object

Multi-view rendered 
images

Figure 11. Illustration of Eval3D Text-3D alignment pipeline.

Figure 12. Statistics of prompts in Eval3D Benchmark Left: The number of entities
in a prompt. Right: Number of semantic elements in a Prompt.

Figure 13. Frequencies of each type of seman-
tic element in the Eval3D scene graphs.

The interface is illustrated in Fig. 16. The inter-annotator
agreement is 83.8%.

Text-3D Alignment: We adopt the annotation template of
previous text-to-image evaluation works [10, 59] and eval-
uate RGB videos instead of images. For each 3D asset, We
ask annotators to answer a series of questions generated au-
tomatically from the text prompt, as discussed in [10]. The
annotators perform multiple-choice video question answer-
ing. They can also mark a question as unreasonable in case
they believe the question is not reasonable. The annotation
interface is shown in Fig. 15. We compute a score for each
3D asset by counting how many questions have been an-
swered “yes”. The inter-annotator agreement, in terms of
pairwise comparison between 3D assets, is 95.4%.

Note on computing automatic evaluations’ alignment
with human. For geometric consistency, aesthetics, and text-
3D alignment, we compute evaluation metrics’ alignment
with humans using the same way as we compute the inter-
annotator agreement, i.e. pairwise comparison agreement.
For semantic and structural consistency, humans annotate
“yes” “no” while the automatic evaluation gives a continu-
ous value. We process the automatic evaluation by finding a

threshold to divide its scores into two classes. For all eval-
uation metrics, we report the maximum value of human
alignment given all possible thresholds. For Eval3D, the
threshold for structural consistency is 75.8%; for semantic
consistency it is 63.3%.
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Figure 14. Geometric Consistency Annotation Interface: For
each prompt, we show RGB & normal map videos of the assets
generated by all six 3D generation models. We only show 4 of them
here.

Figure 15. Text-3D Alignment Annotaiton Interface.

Figure 16. Aesthetics Annotation Interface: For each prompt,
we show the RGB videos of the assets generated by all six 3D
generation models. We only show 3 of them here.

Figure 17. Structural & Semantic Consis. Annotation Interface.
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Algorithm Generation Zero123 Generation 
via reference image (1)   

Zero123 Generation 
via reference image (2) 

(1) (2) 

Figure 18. Structural Consistency measures overall 3D plausibility by comparing (via Dreamsim) the text-based 3D asset renderings with
predictions from the image-based novel view synthesis algorithm, Zero123 (i.e., comparing column 1 with columns 2 and 3). The middle
rows highlight faulty generations with Janus issues, while the remaining rows showcase multi-view consistent generations.
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Texture fools hand perception  
Hands Hands

Texture-Geometry inconsistency spotted!

Textured Geometry Base Geometry Semantic Inconsist. (localized)

“Michelangelo style statue of dog reading news on a cellphone”

Extraneous (hand) geometry Semantic Inconsistency Spotted!

“A zoomed out DSLR photo of a monkey riding a bike"

“A book bound in mysterious symbols”

“A zoomed out DSLR photo of a pigeon standing on a manhole cover”

Multiple faces, beaks (Janus issue) Inconsistent Floaters

Texture-Geometry inconsistency spotted!

Figure 19. Semantic Consistency leverages the DinoV2 foundational model to measure the multi-view semantic consistency of each mesh
vertex. We showcase various scenarios that could lead to multi-view semantic confusion, such as Janus issues, extraneous geometry, incorrect
texture-geometry alignment, and generated floaters. Incorrect texture-geometry alignment will lead to incorrect back-projection of 2D Dino
features onto 3D points, leading to high inconsistency.
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Approach Geometric 
Consistency

Semantic 
Consistency

Structural 
Consistency

Aesthetics Text-3D 
Alignment

ProlificDreamer 83.1 75.8 79.8 56.5 66.7
Magic3D 97.7 71.95 81.5 53.5 66.7

DreamFusion 98.0 72.0 75.9 12.0 33.3
MVDream 91.9 80.0 79.4 88.1 16.7

Figure 20. Text-to-3D Generation Comparison: Magic3D and DreamFusion generate geometrically consistent but overly smooth and
simpler geometries that lack aesthetic appeal. MVDream fails miserably to align with this particular prompt, while ProlificDreamer has
noticeable localized artifacts in both geometric and semantic inconsistency maps.
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“A squirrel dressed like Henry VIII king of England”
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Alignment

ProlificDreamer 82.2 75.0 81.9 65.1 66.7
Magic3D 97.3 55.2 79.9 40.3 66.7

DreamFusion 94.1 74.5 84.8 1.36 66.7
MVDream 87.1 80.0 84.5 84.1 66.7

Janus Issue, 
Texture-geometry 
misalignment

Blurry 3D,
Texture-geometry 
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Semantically-confusing 
renderings,
Flatten geometry

Figure 21. Text-to-3D Generation Comparison: Magic3D and DreamFusion generate geometrically consistent but overly smooth and
simpler geometries that lack aesthetic appeal. Magic3D fails miserably on the semantic consistency metric for this prompt due to semantically
confusing renderings from certain viewpoint. Both MVDream and ProlificDreamer exhibit noticeable artifacts in the geometric consistency
map for this prompt – ProlificDreamer shows issues with texture-geometry alignment, while MVDream suffers from noisy generation.
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