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8. Overview

The supplementary material provides additional details and

insights into the RipVIS dataset, experimental results, and

methodology. While the main paper focuses on the major

contributions and results, this document elaborates on the

dataset’s structure and diversity, the qualitative results of

our experiments, and the impact of Temporal Confidence

Aggregation (TCA) on rip current detection.

This supplementary aims to reinforce the robustness and

reproducibility of our findings, offering a deeper under-

standing of the addressed challenges and proposed solu-

tions. It also provides additional visualizations and metrics

that could not be included in the main manuscript due to

space limitations, including validation results (see Table 4).

RipVIS is a Video Instance Segmentation dataset, and

it is challenging to convey its value in a static format. The

supplementary material starts with a short description of the

dataset variety in Section 9, with a visual showcase of all its

diversity without masks, urging readers to see how many rip

currents they can identify in Figure 6, before looking at the

ground truths in Figure 7.

We continue in Section 10 with a deep dive into TCA,

as exemplified in Figure 3. We describe the approach, its

implementation methodology, its improvements and limita-

tions, as well as final results. We also showcase TCA in

action in more detailed scenarios, by sampling more frames

from the same video. In Figure 5, TCA can be seen fil-

tering false negatives, while in Figure 8, it can be seen

filtering false positives, with a strong success rate, albeit

not 100%. Lastly, we provide Figure 9, where TCA harms

performance in a video transitioning from static to moving

camera.

Finally, we finish with hyperparameter tuning in Section

11, diving deep into the hyperparameters that we used to

train the different models, their strength, limitations and

overall results. We analyze each model individually, dis-

cussing the approach used for hyperparameter tuning in

each case. Ultimately, in Table 5, we present the standard

deviations on all relevant metrics, for all models, on both

validation and test sets.

9. Dataset Variety

Rip currents are complex, dynamic phenomena, requiring

datasets that reflect their diversity in form, environment, and

conditions. The RipVIS dataset was designed to capture this

variety comprehensively, spanning different geographic lo-

Resolution #Videos FPS #Videos

4, 096× 2, 160 1 60 14

3, 840× 2, 160 24 50 1

2, 730× 1, 440 1 30 119

2, 720× 1, 530 6 25 8

2, 560× 1, 440 2 24 8

2, 160× 3, 840 1

1, 920× 1, 080 53

1, 280× 720 52

1, 280× 676 2

1, 080× 1, 920 2

720× 1, 280 1

480× 360 3

360× 640 2

Total 150 Total 150

Table 3. Resolution and FPS distribution of the 150 RipVIS videos

containing rip currents, sorted by decreasing resolution and FPS.

Videos are primarily landscape-oriented, with a few in portrait, re-

flecting real-world camera diversity. This variation enables robust

evaluation across video qualities.

cations, camera perspectives, and environmental scenarios.

The dataset consists of 184 videos, totaling 212,328

frames. The videos are taken from multiple orientations and

elevations, with different types of rip currents, in various

weather conditions, from both seas and oceans. Figure 6

contains a large sampling from the videos, showcasing this

variety, with Figure 7 showcasing their annotation masks.

RipVIS videos are mainly in landscape orientation, with a

few in portrait, reflecting real-world diversity in camera se-

tups. For a detailed breakdown of the resolution and FPS

distribution of RipVIS videos, see Table 3.

10. Temporal Confidence Aggregation (TCA)

TCA is an approach that enhances the consistency and reli-

ability of rip current segmentation in video data by leverag-

ing temporal information across consecutive frames. TCA

effectively accumulates segmentation confidence over time,

generating heatmaps that emphasize regions with stable rip

current detections, while reducing noise from sporadic or

transient detections.
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Figure 5. A more detailed example of TCA in action. All rows are of frames from the same video, showing how we mitigate for the false

negative present in frames 176 (3rd row) and frame 202 (5th row).

10.1. Methodology

The TCA approach consists of several components that

work together to aggregate segmentation confidence over

time. Each component plays a role in dealing with the fluc-

tuating and complex patterns of rip currents.

Heatmap initialization. For each instance, a heatmap is

initialized as a two-dimensional array, where each value

represents the accumulated segmentation confidence for a

corresponding pixel in the video frame. This heatmap cap-

tures areas of high and consistent rip current activity, ensur-

ing that these remain prominent throughout the analysis.

Heatmap update. The core of TCA lies in updating the

heatmap over time by leveraging the current segmentation

mask and information from previous frames. The confi-

dence scores for each pixel are averaged across a short tem-

poral window using the formula:

Cavg(t) = α · C(t) + (1− α) · Cavg(t− 1),

where C(t) is the confidence score at time t, Cavg(t) is the

aggregated confidence score, and α is the decay factor, set

between 0 and 1, which dictates the influence of the current

frame’s confidence on the moving average. This step boosts

the scores of consistently detected pixels. Additionally, ev-

ery instance associated with a heatmap is accompanied by

two supporting arrays:
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Mask-RCNN [24] 0.415 0.615 0.550 0.496 0.561

Cascade Mask-RCNN [5] 0.550 0.531 0.548 0.540 0.535

YOLO11n [28] 0.679 0.492 0.610 0.571 0.521

YOLO11s [28] 0.670 0.514 0.596 0.582 0.534

YOLO11m [28] 0.679 0.543 0.630 0.603 0.566

YOLO11l [28] 0.729 0.521 0.619 0.608 0.553

YOLO11x [28] 0.612 0.628 0.649 0.620 0.625

SparseInst R-50 [9] 0.477 0.664 0.564 0.555 0.615

SparseInst PVTv2 [9] 0.606 0.615 0.617 0.610 0.613

Table 4. Performance comparison of different models on the vali-

dation split. The models are applied on video and the metrics are

calculated by evaluating on manually annotated frames. The best

result on each metric is highlighted in blue.

• Present counter: This pixel-wise counter tracks the cu-

mulative number of detections for each pixel within an in-

stance’s mask. Upon a detection, the counter increments

for corresponding pixels, and growth is triggered only

when the counter reaches a minimum threshold. This de-

lay ensures that transient or spurious detections do not



prematurely inflate heatmap values.

• Absence counter: In contrast, this counter tracks the

consecutive frames without a detection for each pixel. In

the absence of a detection, the counter increases, trigger-

ing a reduction of heatmap values by a decay factor.

The heatmap update process is implemented using vec-

torized GPU operations, allowing efficient processing even

for high-resolution video frames.

Heatmap smoothing. Rip currents often have amorphous

shapes that change rapidly across frames. To maintain sta-

bility, while accommodating their fluid nature, a Gaussian

smoothing filter is applied to the heatmap.

Hysteresis thresholding. TCA employs hysteresis thresh-

olding to derive final binary masks from accumulated

heatmaps, operating on the principle of differentiating

strong and weak confidence scores within the heatmap. It

uses an upper and a lower threshold. Pixels above the up-

per threshold are marked as strong detections, while those

between the lower threshold and the upper thresholds form

a weak detection. To connect these pixels, TCA applies

a morphological dilation operation to each strong region,

slightly expanding it to overlap with the weak mask. The

final segmentation mask comprises strong pixels alongside

weak pixels that are spatially connected to them.

Instance tracking. For each new frame, TCA tracks in-

stances by matching them to IDs assigned in earlier frames.

10.2. Results and Discussion

The output of TCA is a heatmap that provides a confidence-

weighted visualization of rip current segmentation over

time. This aggregated heatmap is particularly beneficial for

applications such as:

• Rip current tracking: Providing a stable representation

of rip current activity, even when individual segmenta-

tions are noisy or inconsistent.

• Beach safety monitoring: Emphasizing regions of high

rip current activity, which can help in developing early

warning systems to alert beachgoers and lifeguards.

By aggregating temporal information, TCA effectively

reduces the impact of sporadic false positives and false neg-

atives, ensuring that only regions with consistent rip current

activity are highlighted, making it a robust approach for rip

current segmentation.

10.3. Limitations

While TCA provides significant improvements in the con-

sistency of rip current segmentation, there are several limi-

tations:

• Increased computational requirements: TCA requires

maintaining and updating a heatmap in real-time, which

can be computationally demanding, particularly for high-

resolution video. Although GPU acceleration helps, sub-

stantial computational resources are still required.

• Latency in highlighting rip currents: Due to the need

for multiple consistent segmentations before increasing

confidence, TCA introduces some latency in highlighting

newly detected rip currents. This can be a drawback for

short videos or fast changing camera movement.

• Parameter sensitivity: The success of TCA hinges on

well-adjusted parameters and thresholds. Consequently,

although TCA can boost performance in tailored setups,

achieving this becomes progressively more difficult as the

setup broadens in scope.

11. Hyperparameter Tuning

This section provides an extended analysis of our exper-

imental results, focusing on model performance on the

RipVIS dataset and insights from hyperparameter tuning

studies. The experiments are aimed to assess popular in-

stance segmentation models for rip current detection and

evaluate key hyperparameter impacts.

Most experiments are focused on varying backbones, op-

timizers, schedulers, and learning rates, as these hyperpa-

rameters greatly affect a model’s ability to generalize and

detect complex rip current patterns. Other parameters, like

training epochs, early stopping patience, and batch size,

were tested but showed minimal impact. To further enhance

robustness, we extensively tested image augmentations for

models implemented in Detectron2 (all except YOLO11,

for which we used the built-in ones), exploring their effect

on performance under diverse conditions.

In the following subsections, we provide a detailed de-

scription of the employed models, their configurations, and

the conducted experiments. Each model was extensively

evaluated under varying settings to identify the optimal con-

figurations, understand their strengths and limitations, and

assess their suitability for the challenging task of rip current

segmentation in diverse video settings.

Mask R-CNN: Mask R-CNN [24], a two-stage model, ex-

tends Faster R-CNN with a segmentation branch, enabling

simultaneous object detection and pixel-level masking. Us-

ing a Region Proposal Network (RPN) to generate Regions

of Interest (RoIs), it excels at capturing irregular shapes like

rip currents but sacrifices speed due to its complexity. In

our tests, its performance was hampered by the dynamic na-

ture of rip currents. For our experiments, we conducted an

extensive study focusing primarily on different backbones,

as these are critical for feature extraction. The backbones

included ResNet-50-FPN [23], ResNet-101-FPN, ResNet-

50-DC, and ResNet-101-DC, with FPN (Feature Pyramid

Networks) enabling multi-scale feature extraction. Dilated

Convolutions (DC), applied to specific stages of the back-

bone, expand the receptive field in these layers, enhancing

spatial context capture for dense prediction tasks. In the ex-

periments, we tested learning rates of 0.0025 and 0.005 with
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Mask-RCNN [24] 0.06 0.09 0.07 0.07 0.08 0.05 0.08 0.07 0.06 0.07

Cascade Mask-RCNN [5] 0.05 0.08 0.07 0.06 0.07 0.06 0.07 0.06 0.06 0.07

YOLO11n [28] 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.03 0.03 0.04

YOLO11s [28] 0.03 0.03 0.03 0.03 0.03 0.02 0.04 0.03 0.03 0.04

YOLO11m [28] 0.04 0.03 0.03 0.04 0.03 0.05 0.04 0.03 0.03 0.04

YOLO11l [28] 0.06 0.04 0.04 0.03 0.04 0.04 0.03 0.03 0.04 0.03

YOLO11x [28] 0.04 0.04 0.03 0.04 0.04 0.05 0.04 0.04 0.04 0.04

SparseInst [9] 0.04 0.04 0.03 0.04 0.04 0.09 0.01 0.05 0.06 0.03

Table 5. Standard deviation summary for all models evaluated on the RipVIS dataset, with varied results across validation and test splits

based on experiments.

Model Train→Test Accuracy

YOLO8n
Dumitriu et al. [16]→Dumitriu et al. [16] 0.750

Dumitriu et al. [16]→RipVIS 0.205

YOLO11n
RipVIS→RipVIS 0.530

RipVIS→Dumitriu et al. [16] 0.803

Table 6. Cross-dataset experiments on RipVIS vs. Dumitriu et al.

[16] dataset.

the SGD optimizer and the Warmup Multi-Step LR sched-

uler.

Cascade Mask R-CNN: Cascade Mask R-CNN [5] builds

on the Mask R-CNN architecture by introducing a multi-

stage cascade of detectors and mask predictors, where each

subsequent stage is trained to refine the outputs from the

previous one with progressively stricter IoU thresholds.

This cascading refinement process can enhance detection

and segmentation accuracy, particularly for objects with

complex or occluded boundaries. In principle, this approach

is beneficial for segmenting ambiguous boundaries, such

as those seen in rip currents, which often exhibit irregu-

lar and shifting patterns. While the multi-stage architecture

helps mitigate false positives and improve instance mask

quality, it does increase computational overhead. In prac-

tice, however, the model’s performance on rip currents was

limited, indicating potential challenges in handling highly

amorphous and dynamic shapes.

Similar to Mask R-CNN, we conducted experiments

focusing on backbone variations, using ResNet-50-FPN,

ResNet-101-FPN, ResNet-50-DC, and ResNet-101-DC.

Learning rates of 0.0025 and 0.005 were tested, alongside

the SGD optimizer and Warmup Multi-Step LR scheduler.

YOLO11: In our experiments, YOLO11 [28] achieved rea-

sonably high performance among the models tested for rip

current segmentation, while also being the fastest. How-

ever, while it outperformed some models, it still struggled to

accurately segment the complex rip current patterns present

in our dataset, indicating that even advanced models like

YOLO11 require further refinement to address the unique

challenges of this task effectively. This performance high-

lights the difficulty of the problem and the need for con-

tinued work in developing specialized approaches for rip

current detection.

For YOLO11, we performed the most extensive study,

testing multiple configurations to maximize its perfor-

mance. The study included all size variants (nano, small,

medium, large, and x) and tested learning rates of 0.01 and

0.001, along with a weight decay of 0.0005. The models

were trained using various optimizers, including SGD with

momentum, Adam, AdamW, and standard SGD. The learn-

ing rate schedulers included both linear and cosine decay

strategies.

We evaluated YOLO11 with both pre-trained weights

and custom-trained weights, allowing us to analyze the im-

pact of transfer learning on rip current detection. Pre-

trained weights generally resulted in faster convergence and

higher initial accuracy, while custom-trained weights of-

fered more flexibility in adapting to the unique character-

istics of the RipVIS dataset.

SparseInst: SparseInst [9] uses sparse instance activa-

tion maps for efficient, real-time segmentation, leveraging

feature aggregation and bipartite matching to skip post-

processing. This lightweight design minimizes computa-

tional overhead, making it ideal for dynamic tasks like rip

current detection. We tuned it with ResNet-50, ResNet-101,

and PVTv2 backbones, adjusting learning rates, optimizers

(SGD, AdamW), batch sizes, and sparsity thresholds to bal-

ance sensitivity and noise. PVTv2 with data augmentation

achieved the highest F2 score among all models, alongside

top F1 and fast inference, making SparseInst the best over-

all choice for rip current detection.



Figure 6. Examples of rip currents from the dataset, showcasing its diverse nature. Here we show frames from 55 randomly selected videos

(out of 115 with rip currents). Can you spot them all? Some are easy, while others can be deceiving at first glance.



Figure 7. The same examples as before, with the ground truth masks overlayed on top. Pay special attention to the rip currents with

sediments. How many did you get right?
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Figure 8. In this situation, TCA manages to filter many false positives, but not all. Too many false positives in a row get accumulated into

a final detection (frames 062 - 145). Many false positives are on and off, though, and TCA helps filter most of them.
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Figure 9. An example where TCA does more harm than good, if the camera is moving fast enough (in this case, the drone is dashing along

the beachfront).
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