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S.1. Human Contact Prediction
S.1.1. Evaluation on the 3DIR Dataset
We evaluate our method against several state-of-the-art
approaches for human contact prediction on the 3DIR
dataset [7] as shown in Tab. S.1. Our method outperforms
methods that are trained on 3D training data for only hu-
mans, while it is on par with methods that use 3D data
for both humans and objects. Moreover, by eliminating the
requirement for paired human-object contact training data,
our method can be trained on more categories than prior
work, as unpaired datasets are more varied. This makes our
method more practical for real-world applications.

S.1.2. Contact Estimation Across Body Parts
We extend our binary contact estimation’s evaluation to
measure our method’s performance across different human
body parts to ensure it captures nuanced interactions effec-
tively. As shown in Tab. S.2, our method (InteractVLM)
significantly outperforms DECO [6] across all body parts,
including the head, torso, hands, arms, feet, and legs. The
results demonstrate our method excels at detecting contacts
across diverse body parts, making it well-suited for real-
world scenarios.

S.1.3. Semantic Human Contact per Object Class
We evaluate our method’s performance on “semantic human
contact” prediction across a diverse set of object categories
from the DAMON dataset, as shown in Tab. S.3. Results
for high-level categories are presented in the main paper.
We compare our method against “Semantic-DECO”, which
is our extension of the existing DECO [6] model for this
new task. Our method significantly outperforms Semantic-
DECO in terms of F1-score for all categories. It also
demonstrates strong performance across a wide range of
object categories, from large objects like furniture (couch:
62.1% F1, chair: 70.3% F1) to small objects for sports
(baseball glove: 93.6% F1, tennis racket: 82.3% F1).

S.2. Ablation Studies
We conduct extensive ablation studies to evaluate the con-
tribution of InteractVLM’s main components, including the
influence of the VLM and prompt design choices. The re-
sults are summarized in Tab. S.4, where we use alphabet
numbering to refer to each variant for clarity. Below, we
discuss the key findings from these experiments.
Mask Resolution and MV-Loc Components. Increas-
ing the mask resolution from 512 × 512 (variant (a)) to

Method 3D Supervision F1 Prec. Rec. Geo.
Human Obj. (%) ↑ (%) ↑ (%) ↑ (cm) ↓

BSTRO [2] ✓ ✗ 55.0 57.0 58.0 28.58
DECO [6] ✓ ✗ 69.0 70.0 72.0 15.25
LEMON-P [8] ✓ ✓ 77.0 76.0 81.0 9.02
LEMON-D [8] ✓ ✓ 78.0 78.0 82.0 7.55

InteractVLM ✓ ✗ 78.4 82.5 76.3 6.73

Table S.1. Evaluation for “Binary Human Contact” prediction on
the 3DIR dataset [8]. Note that LEMON is trained with paired
human-object contact data from 3DIR dataset. Instead, for this
task, InteractVLM is only trained with human contact data from
the same dataset.

Method Head Torso Hips Hands Arms Feet Legs

DECO [6] 20.0 46.1 66.6 74.3 22.2 94.4 66.6
Ours 56.0 87.2 95.7 93.5 71.5 96.9 68.3

Table S.2. F1 scores for human contact estimation w.r.t. body parts

1024 × 1024 (variant (b)) yields a significant improvement
of 4.9% in F1 score, highlighting the importance of fine-
grained spatial information for contact detection. For the
MV-Loc feature embedding, using our FeatLift network
(variant (e)) outperforms simply concatenating camera pa-
rameters (variant (d)) by 3.7%, demonstrating its effective-
ness in incorporating viewpoint information. Removing
camera parameters entirely (variant (c)) further degrades
performance, emphasizing their role in the pipeline. How-
ever, the performance significantly drops when we replace
MV-Loc with a 2 layer MLP (variant (f)).
Loss Functions. Using only the valid mask regions for
training (variant (h)) improves performance by 3.3% com-
pared to using the whole mask (variant (g)). The addition of
our 3D contact loss (variant (i)) further boosts the F1 score
by 3%, underscoring the importance of explicitly modeling
3D contact cues during training.
Data and VLM Influence. The choice of training data
significantly impacts performance. Using only 3D contact
datasets (variant (j)) results in a relatively low F1 score of
65.9%. Adding contact parts in text form (variant (k)) im-
proves performance by 8.9%, while further incorporating
HOI-VQA data (variant (l)) achieves the best results. This
demonstrates the value of leveraging textual and contextual
cues for contact localization.

The VLM plays a critical role in the pipeline. Removing
the VLM entirely (variant (m)) drastically reduces perfor-
mance, while using a VLM with only image input (vari-
ant (n)) serves as a strong baseline. Fine-tuning the VLM
(variant (b)) is crucial, as the non-fine-tuned version (variant
(o)) shows a significant drop in performance. Interestingly,



Object # Semantic-DECO [6] InteractVLM (Ours)

F1 Prec. Rec. Geo. F1 Prec. Rec. Geo.
Categories (%) ↑ (%) ↑ (%) ↑ (cm) ↓ (%) ↑ (%) ↑ (%) ↑ (cm) ↓

Skateboard 85 30.3 19.3 91.3 99.95 71.5 67.0 83.5 0.90
Surfboard 70 23.1 14.2 98.4 101.22 79.7 76.3 78.9 0.80
Snowboard 49 38.2 25.7 92.2 108.29 84.2 83.1 84.0 0.20
T. Racket 45 57.0 42.0 99.6 64.25 82.3 80.8 86.3 0.20
Cell phone 43 42.4 27.8 99.6 51.73 70.6 73.1 74.3 7.00
Couch 38 31.4 19.7 89.2 17.07 62.1 62.5 60.5 2.10
Bicycle 37 62.1 48.0 98.1 29.89 81.5 84.4 81.9 2.50
Chair 36 23.2 14.6 87.1 36.05 70.3 73.6 68.8 1.60
Bench 35 19.0 11.2 92.1 29.51 63.0 70.7 64.4 4.00
Motorcycle 33 60.4 45.5 99.1 19.24 76.6 78.6 77.7 0.90
Book 27 48.0 33.8 99.7 53.59 74.1 75.2 80.1 1.10
Skis 25 36.5 25.0 93.4 104.07 83.0 81.4 83.7 0.80
Bed 24 29.1 19.1 82.9 20.71 54.0 56.7 48.8 2.70
Laptop 24 36.9 24.9 94.4 45.73 54.0 54.0 68.6 4.70
Backpack 24 37.2 24.3 87.2 12.10 59.2 71.1 54.8 3.50
Umbrella 23 51.5 36.1 99.2 67.20 82.3 83.7 86.4 1.00
Knife 19 63.3 54.0 84.4 31.55 77.0 74.9 86.6 0.10
Frisbee 15 33.9 22.0 99.4 69.43 68.7 71.5 84.5 1.00
D. Table 11 19.6 14.1 67.1 42.56 35.2 44.9 63.4 6.60
B. Glove 10 71.4 63.3 81.9 41.58 93.6 98.6 89.1 0.10
Remote 10 0.2 1.0 0.1 82.16 70.6 77.4 82.7 0.50
Banana 10 6.1 7.1 6.4 67.19 76.6 74.3 81.7 2.80
Kite 9 65.3 51.8 95.9 50.50 85.4 86.0 85.4 0.30
Toothbrush 8 2.9 4.7 2.1 56.38 77.3 82.6 74.8 5.40
Boat 8 33.5 23.9 83.7 46.24 71.3 75.3 63.1 1.40
Sports ball 8 36.0 34.1 39.4 60.54 64.4 74.0 83.8 5.30
B. Bat 8 36.7 60.8 27.2 26.00 82.8 81.2 87.8 1.60
Apple 7 6.3 17.4 3.9 45.69 69.3 62.9 77.7 4.20
Handbag 7 12.1 7.0 46.2 26.61 31.8 27.1 40.4 4.10
Tie 6 39.8 28.1 87.2 7.24 49.6 32.8 60.8 7.60
Suitcase 6 26.7 24.0 30.7 87.44 79.2 65.9 83.4 0.80
Wine glass 5 5.5 8.4 5.0 70.32 66.4 68.5 69.4 4.40
Spoon 5 61.1 48.5 89.9 15.35 67.5 62.8 78.5 5.50
Fork 5 1.5 1.6 1.3 75.47 64.9 66.2 76.5 2.20
Keyboard 5 3.2 6.2 3.1 70.41 60.8 69.1 74.0 0.50
Teddy bear 5 17.5 15.7 45.0 24.70 43.8 61.6 68.8 11.60
Clock 4 23.3 14.8 58.1 46.42 37.1 68.9 75.0 3.30
Cake 4 0.0 0.0 0.0 83.99 52.4 41.9 82.2 10.60
Scissors 4 0.2 0.2 0.2 87.88 28.7 21.4 73.1 40.10
Cup 4 7.2 11.2 5.4 69.03 68.6 71.4 76.2 1.70
Car 4 0.0 0.0 0.0 49.13 66.7 67.7 73.3 5.30
Pizza 4 19.4 19.0 35.1 46.43 44.3 44.1 71.4 29.20
Carrot 3 0.0 0.0 0.0 90.22 59.7 62.4 77.6 0.20
Truck 3 0.0 0.0 0.0 61.65 81.2 84.9 77.5 3.10
Bottle 3 0.0 0.0 0.0 91.14 59.2 55.1 81.2 0.10
Airplane 2 0.0 0.0 0.0 87.52 76.4 69.3 85.2 3.60
Toilet 2 0.0 0.0 0.0 86.55 32.5 35.7 71.1 3.30
Hot dog 2 7.0 23.0 4.1 46.32 81.3 84.0 78.9 4.10
Donut 2 19.6 30.7 14.8 42.47 73.6 90.1 65.6 12.00
Mouse 1 0.0 0.0 0.0 82.03 40.7 27.0 82.9 0.10
Vase 1 0.0 0.0 0.0 91.96 68.5 59.3 81.0 0.20
F. Hydrant 1 0.0 0.0 0.0 88.18 85.5 82.7 88.5 0.00

Table S.3. Evaluation for “Semantic Human Contact” prediction
on the DAMON [6] dataset for different object categories in the
test set. The number of samples for each category is shown in
the second column. “Semantic-DECO” is our extension of the
existing DECO [6] model for this new task. Zero metrics indicate
no correct predictions for the class.

reducing the VLM size from 13B to 7B parameters (vari-
ant (p)) has minimal impact, suggesting that the model can
maintain strong performance even with fewer parameters.
Prompt Design. The design of the text prompt signif-
icantly influences the results. Using fine-grained contact
parts (variant (q)) outperforms a coarse segmentation (vari-
ant (r)) by 6.4% in F1 score, indicating that finer granular-
ity in body part labeling is beneficial. Removing the ob-
ject name from the prompt (variant (s)) also degrades accu-
racy, highlighting the importance of explicit object context

Variants F1 Prec. Rec.
(%) ↑ (%) ↑ (%) ↑

Masks (a) Size 512 × 512 70.7 70.1 71.4
(b) Size 1024 × 1024 75.6 75.2 76.0

MV-Loc

(c) No CamParams 69.4 68.0 71.1
(d) Concat CamParams 71.9 72.0 71.8
(e) FeatLift (Φ) 75.6 75.2 76.0
(f) No MV-Loc 62.3 60.8 63.9

Losses
(g) Whole Mask 69.3 68.7 70.0
(h) Valid Mask 72.6 71.2 74.0
(i) + 3D Contact Loss 75.6 75.2 76.0

Data
(j) 3D Contact Datasets 65.9 64.8 67.0
(k) + Contact Parts (text) 74.8 74.5 75.1
(l) + HOI-VQA 75.6 75.2 76.0

VLM

(m) No VLM 32.3 30.8 43.0
(n) VLM-13B-Img 67.2 68.5 66.0
(o) VLM-13B-NoFT 64.8 65.3 64.2
(p) VLM-7B 73.3 76.8 73.5

Prompt
(q) Contact parts (fine) 74.8 74.5 75.1
(r) Contact parts (coarse) 68.4 69.0 67.8
(s) No object name 71.5 72.1 70.9

Table S.4. Ablation study for the effect of different InteractVLM
components. We evaluate for “Binary Human Contact” prediction
on the DAMON dataset [6].

in guiding the VLM’s predictions.
Our ablation studies demonstrate the importance of fine-

grained spatial information, effective feature embedding,
3D contact modeling, and well-designed prompts in achiev-
ing robust contact localization. The VLM’s role, particu-
larly its fine-tuning and input modalities, is also critical to
the overall performance.

S.3. Impact of RLL
“Render-Localize-Lift” (RLL) is central to our method.
Traditional approaches, like DECO [6] and RICH [2], rely
on fully supervised learning with limited 3D GT data to
predict 3D contacts. While effective for scenarios encoun-
tered during training, these methods fail to generalize to in-
the-wild cases. To address this limitation, we leverage the
broad visual knowledge of VLM to learn from the limited
data. However, effectively utilizing VLM requires reformu-
lating our 3D problem into a 2D representation, making it
compatible with VLM, which we achieve through RLL. As
demonstrated in the main paper, by using RLL with VLM,
we surpass the state-of-the-art method for human contact
estimation while training on only 5% of the data.

S.4. Implementation Details
S.4.1. Architecture
InteractVLM has two major blocks; a reasoning module, Ψ,
based on LLaVA-v1 [4] and a novel multi-view localization
model, MV-Loc, based on SAM [3]. MV-Loc has 2 com-



ponents; a shared encoder, Θ and two separate 2D contact
decoders, ΩH and ΩO, for humans and objects respectively.
Θ, ΩH , and ΩO have the same architecture as SAM.

Given an RGB image, I, and prompt text, Tinp, the VLM
produces contact tokens, <HCON> and <OCON>, for humans
and objects, respectively. To aid MV-Loc in localizing con-
tact, we extract the last-layer embeddings of the VLM cor-
responding to these tokens and pass them through a projec-
tion layer, Γ. The latter, Γ, is a multi-layer perceptron with
2 layers each of size 256 and a ReLU activation.

S.4.2. Training
Before the start of training, we render multiple views of the
human mesh and object point cloud. We also compute the
ground-truth contact mask.

S.4.2.1. Human Mesh Rendering
The human mesh rendering pipeline uses a comprehen-
sive multi-view approach using the SMPL+H [5] paramet-
ric body model. We initialize the model in a neutral shape,
positioning the body in a Vitruvian pose. This specific pose
ensures optimal visibility of potential contact surfaces. We
use PyTorch3D for rendering. We select 4 camera view-
points to capture the complete body geometry: top-front (el-
evation 45°, azimuth 315°), top-back (45°, 135°), bottom-
front (315°, 315°), and bottom-back (315°, 135°). Each
viewpoint is positioned at a distance of 2 units from the
subject with slight horizontal translations to optimize cov-
erage. We use a FoV-Perspective projection model rendered
at 1024×1024 resolution, with “blur-radius” and “faces-per-
pixel” settings set as 0.0 and 1, respectively. For realistic
appearance, we use point lights positioned at [0, 0, ±3] co-
ordinates relative to the mesh. The lighting settings such
as “ambient”, “diffuse”, and “specular” are set at 0.5, 0.3,
0.2, respectively. This creates a balanced illumination that
highlights surface details. Surface normals are computed
per vertex and are used as vertex colors.

Crucially, InteractVLM maintains precise correspon-
dence between 2D rendered pixels and 3D mesh vertices.
For each rendered view, it generates: (1) A pixel-to-vertex
mapping matrix storing the indices of mesh vertices visible
at each pixel. (2) Barycentric coordinates for accurate in-
terpolation within mesh faces. (3) Binary contact masks for
regions with at least three neighboring vertices in contact.

This comprehensive multi-view representation, com-
bined with precise pixel-to-vertex correspondences, enables
accurate lifting of 2D contact predictions back to the 3D
mesh space. Our model processes each view as separate
channels in a B × V × 3 × H ×W tensor shape during train-
ing, where B is the batch size and V is the number of views.

S.4.2.2. Object Point Cloud Rendering
The object rendering pipeline uses point clouds to capture
object affordances in multiple views. The point cloud pre-

processing begins with normalization, where each object is
centered at its geometric centroid and scaled to fit within
a unit sphere, ensuring consistent scale across different ob-
jects. Since the point clouds do not have color, we use the
NOCS representation for coloring, namely for every point
we assign a color derived from its normalized spatial NOCS
coordinates (scaled to [0.1, 0.9] for better contrast).

Our rendering pipeline uses PyTorch3D with four view-
points: front-left (elevation 45°, azimuth 315°), front-right
(45°, 45°), back-left (330°, 135°), and back-right (330°,
225°). Each view is rendered at 1024×1024 resolution us-
ing a FoVPerspective camera positioned at a distance of 2
units from the object center. We use a fixed point cloud
radius of 0.05. For the rasterization settings: we use 10
points per pixel and 50,000 points per bin to handle dense
point clouds effectively. An alpha compositor is used for
the final rendering. For affordance heatmaps, we generate
a rendered view with continuous values, [0, 1], representing
the affordance likelihood. For each view, we create a pixel-
to-point mapping for lifting 2D affordance heatmaps to 3D
affordance points.

S.4.3. Additional Text Data for Training
S.4.3.1. Data from GPT4o
To enhance our model’s understanding of human-object
interactions (HOI), we build a comprehensive Visual
Question-Answering (VQA) data generation pipeline us-
ing GPT-4V (GPT4o). The pipeline processes images from
three datasets, namely DAMON [6], LEMON [8], and
PIAD [7], generating structured textual descriptions that
capture multiple aspects of HOI.

For each image, we query GPT-4V to describe five key
aspects: (1) the human’s visual appearance including cloth-
ing and distinctive features, (2) specific body parts in con-
tact with the object, (3) the nature of the interaction, (4) the
object’s physical characteristics, and (5) the specific parts
of the object in contact with the human. To ensure efficient
processing while maintaining visual fidelity, images are re-
sized to 256×256 pixels.

These generated VQA data enrich the training signal
with detailed descriptions of interactions. This additional
supervision helps our model develop a more nuanced un-
derstanding of the relationship between visual features and
contact regions, ultimately contributing to improved per-
formance in contact prediction tasks. We format the col-
lected data as JSON files to seamlessly integrate these with
our VLM training pipeline, allowing the model to leverage
these rich textual descriptions during the learning process.

S.4.3.2. Converting 3D contact vertices to text
To establish a precise mapping between 3D contact vertices
and natural-language descriptions, we leverage the SMPL
body model’s semantic segmentation. The body is divided



Figure S.1. Contact Estimation Failure Cases. Our method
struggles with unusual human poses (left). For objects (right),
training on affordances rather than actual contacts can sometimes
lead to ambiguous contact predictions, especially for large objects
like chairs. However, no dataset exists for 3D object contacts for
in-the-wild images.

Figure S.2. Object Retrieval Failure Cases. The retrieved object
meshes (right) differ notably from the actual objects in the input
images (left), especially in cases of significant occlusion, atypi-
cal object instances, or limited database coverage. Despite these
inaccuracies, the retrieval consistently selects objects within the
correct semantic category.

into 15 semantically meaningful parts including the torso,
head, hands, feet, arms, legs, thigh and forearm. For train-
ing our VLM, we employ a diverse set of natural-language
prompts that query about body part contacts with objects.
This structured approach creates a strong bridge between
geometric contact information and natural-language under-
standing, enabling the model to learn the relationship be-
tween visual features, contact regions, and their semantic
descriptions.

S.5. Failure Cases
Despite the overall strong performance, our method has cer-
tain limitations. For human contact prediction, our method
occasionally struggles with unusual or ambiguous poses
that deviate significantly from common interaction patterns.
For example, in Fig. S.1 the person is sleeping in an unusual
pose on the bed.

Regarding objects, our method faces challenges inher-
ent to the training paradigm. Since there exists no dataset
of in-the-wild images with ground-truth 3D contact annota-
tions for objects, we train on affordance data, which repre-
sents likelihood of contact rather than actual contact points.

However, the distinction between actual contacts and affor-
dances can be ambiguous, particularly for large objects like
chairs, as shown in Fig. S.1.

In highly occluded or visually ambiguous scenarios, our
approach can face challenges due to object lookup failure.
The object lookup is also limited by the richness and di-
versity of underlying object database. However, since our
method performs retrieval within predefined object cate-
gories, it consistently retrieves an object instance belonging
to the correct semantic category, even if exact geometric
matches are not always guaranteed. We provide qualitative
examples highlighting these limitations in Fig. S.2.

S.6. Qualitative Results
We present qualitative results for our InteractVLM method
for three different tasks. First, in Fig. S.3 we show the ob-
ject affordance prediction results, where our method more
accurately identifies plausible contact regions on objects
compared to the state-of-the-art IAGNet method. Sec-
ond, we show “semantic human contact” prediction results
in Fig. S.4, where our method successfully identifies contact
regions on human bodies specific to different object cate-
gories, even in complex scenarios. Finally, in Fig. S.5, we
demonstrate 3D HOI reconstruction from in-the-wild im-
ages, where we leverage the inferred contacts on both hu-
man bodies and objects to generate physically plausible 3D
reconstructions; this is done for the first time for in-the-wild
images.

S.7. Future Work
Our approach follows a two-stage process for 3D HOI: it
first predicts human and object contacts, and then uses the
inferred contacts in optimization for joint 3D reconstruc-
tion. In the future, we will explore learning to perform both
3D contact prediction and 3D reconstruction in an end-to-
end fashion. This could lead to more coherent predictions
by learning and exploiting direct relationships between con-
tact points and physical constraints.

Moreover, currently our approach learns on disjoint im-
age datasets of body contacts and object affordances. In the
future, we will also exploit recent datasets of images paired
with contact annotations for both bodies and objects [1].
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Input Image IAGNet InteractVLM (Ours) Input Image IAGNet InteractVLM (Ours)

Figure S.3. Object Affordance Prediction. Here we compare our InteractVLM method trained for object affordance prediction on
PIAD [7] dataset with the state-of-the-art IAGNet method. We train for affordance detection because there exists no dataset of in-the-wild
images paired with ground-truth 3D contacts for objects. Note that given an image of a person performing an action like “sit” or “grasp”,
the affordance prediction task estimates “contact possibilities” on the object.



Input Image InteractVLM (Front) InteractVLM (Back) Input Image InteractVLM (Front) InteractVLM (Back)

Figure S.4. Semantic Human Contact estimation. Here we show results for “semantic human contact” estimation from in-the-wild
images. Each row shows a person in contact with multiple objects. Note how InteractVLM estimates contact on bodies that is specific to
the object.



Input Image InteractVLM (Front) InteractVLM (Side) Input Image InteractVLM (Front) InteractVLM (Side)

Figure S.5. 3D HOI reconstruction. Here we show results of our InteractVLM method for 3D HOI reconstruction from in-the-wild
images. We use the InteractVLM’s inferred contacts on both bodies and objects for joint 3D reconstruction.
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