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6. CE Derivative
Considering layer-peeled model to make a tractable analysis
[15, 68], the gradient of Equation 1 w.r.t. the wj is:

∂LCE

∂wj
=

n∑
i=1

[−(1−pj(zi))ziδ(j, yi) + pj(zi)zi(1−δ(j, yi))] ,

(11)
here pj(z) is the predicted probability that z = Fθ(x) be-
longs to the j-th class and δ(i, j) is one if i is equal to j
and 0 otherwise. We can reformulate the Equation 11 to the
following form:

−∂LCE

∂wj
= fpull + fpush, (12)

where f
(wj)
pull =

∑n+

i=1[(1− pj (zi)) zi], f
(wj)
push =

−
∑n−

i=1 pj [(zi) zi], n
+ represents samples belonging to the

j-th class, i.e., positives, and n− denotes the samples from
other classes, i.e., negatives. Equation 12 reveals that CE
pulls wj toward the positive instances, i.e., n+, while push-
ing wj away from negative ones, i.e., n−.

Large-scale FR benchmarks follow an imbalanced distri-
bution where some identities have plenty of instances, while
others only contain a few, i.e., n+ ≪ n− [12, 50, 76]. Con-
sequently, the optimization of wj of minority classes is pre-
dominantly influenced by fpush. Additionally, fpush is ap-
proximately uniform across all minority classes and forces
them to the same subspace [12, 68]. Thus, centroids of mi-
nority classes merge, i.e., dubbed ‘minority collapse’, low-
ering inter-class discrimination and metric-space exploita-
tion. Despite the progress of available methods [2, 32], the
‘minority collapse’ issue remains unsolved as long as iden-
tity centroids’ optimization remains dependent on the num-
ber of per-identity instances.

7. Ablation on λ

Here, we examine the impact of varying each λj on the
training process. Each λj quantifies the relative impor-
tance of the j-th token during training, where a higher λj

indicates greater impact of the corresponding token, and a
lower λj suggests less importance. We conducted a series
of ablation studies using the IJB-B and IJB-C datasets with
the WebFace4M training set and a ResNet-100 backbone.
Our objective was to isolate the influence of the length of
the codes; hence, we utilized only LC as the training sig-
nal. We explored four distinct patterns in the distribution
of λi: increasing, decreasing, Gaussian, and uniform, as
depicted in Figure 6a. For each configuration, we normal-
ized the λi values so that their sum equals one. The results,

Figure 6. a) Showing the value of the λ for each token index in
different scenarios. b) GIF performance is the best when the bal-
ancing factor of tokens, i.e., λ, is uniform across tokens.

Figure 7. GPU memory consumption (a) and Training speed (b)
needed for optimization of code vectors.

shown in Figure 6b, indicate that a uniform of λ across to-
ken indices yields superior performance compared to non-
uniform. This finding aligns with our identity tokenization
strategy, wherein the search space is sequentially narrowed
with each correctly predicted token cyi

j of the identity code
cyi . Based on these findings, we employed a uniform λ = 1

l
in our experiments.

8. Code Vector Optimization Cost

Here, we investigate the GPU memory consumption associ-
ated with the optimization of code vectors. As demonstrated
in Figure 7a, even with the number of identities reaching 64
million, the GPU memory usage remains significantly lower
than the OOM threshold. Moreover, Figure 7b shows the
remarkable speed of the optimization in this optimization.
This substantial reduction in memory consumption, coupled
with improvements in processing speed and batch size, can
be attributed to the fact that code vector optimization does
not depend on the dataset or backbone architecture. Conse-
quently, the optimization in Equation 6 bypasses the time-
intensive tasks of image loading and executing feedforward
and backward passes through the backbone.

9. Replacing CLIP with DINO

In this study, we explore the sensitivity of GIF to changes
in the model used for initializing code vectors. We con-



Method Train Set LFW CPLFW CALFW CFP-FP Age-DB IJB-B IJB-C

GIF (DINO) MS1MV2 99.85 94.47 96.75 98.75 98.67 94.98 96.80
GIF (CLIP) MS1MV2 99.85 94.45 96.94 98.80 98.58 95.05 96.77

GIF (DINO) WebFace4M 99.83 94.97 96.92 98.41 98.63 96.95 97.76
GIF (CLIP) WebFace4M 99.85 95.03 96.85 98.36 98.55 96.90 97.83

Table 4. Performance comparison to when we substitute CLIP
with DINO for initializing the code vectors. Verification accuracy
(%) is reported for LFW, CFP-FP, and AgeDB. TAR@FAR= 1e−
4 is reported for IJB-B and IJB-C.

duct experiments employing the DINO [7] representation,
adjusting our embedding dimension to d = 718 to accom-
modate this model. Results presented in Table 4 confirm our
expectations: GIF demonstrates robustness to the specific
pretrained model used to initialize the code vectors. Mod-
els trained on large datasets with the objective of developing
a generalized representation, such as CLIP or DINO, prove
adequate for initializing the code vectors since the proposed
method solely needs the meaningful order of similarity from
initialized code vectors.


