
Novel View Synthesis with Pixel-Space Diffusion Models

Supplementary Material

A. Implementation Details

Our code implementation for both evaluation and train-
ing, along with model weights, are available at https:
//github.com/apple/ml-vivid.

A.1. Model Architecture & Training
Our architecture is based on the U-Net [31] outlined in
EDM2 [17]. To facilitate the processing of both the source
image and the noisy target, we duplicate our U-Net architec-
ture into two dedicated networks, an encoder and a decoder,
as outlined in subsection 3.1 and Figure 2. Specifically,
we employ joint-attention between the encoder’s deep fea-
tures and the decoder’s, in which keys and values are com-
puted for both the encoder and decoder stream and concate-
nated, whereas queries are computed only from the decoder.
We find empirically that joint-attention performs better than
self-attention followed by cross-attention. We use the de-
fault 3 layer per resolution, using resolutions [64, 32, 16, 8]
and [256, 128, 64, 32] for the base and SR models respec-
tively. Beyond the existing attention layers, we add a single
attention layer at the second-highest resolution (32) on the
base model to enhance fine detail transfer between encoder
and decoder through the attention mechanism.

We condition both the encoder and decoder networks on
the diffusion timestep. If time conditioning is omitted from
the encoder network, it would only need to be run once for
each generation, as the source image and geometry do not
change. In preliminary experiments we find that this change
has a slight negative effect on the results, as expected due to
the encoder’s lack of ability to match its extracted features
to the current diffusion timestep. For simplicity, we focus
on the variant conditioning both networks on the timestep,
seeking higher quality results, and leave the exploration of
the more efficient option to future work.

We base our hyperparameter choices on EDM2 [17],
making no change across our experiments to: num-
ber of residual blocks, channel multiples, sampling algo-
rithm, noise schedule, number of inference diffusion steps,
and Adam optimizer hyperparameters. We do not use
dropout and use training noise level distribution with a log-
normal distribution where mean and standard deviation are
Pmean = −0.8 and Pstd = 1.6 respectively. Table 4 lists
our experiment-specific training hyperparameter choices.

During training, we iterate over scenes in the
RealEstate10K dataset, uniformly choosing two views as
the source and target views regardless of the distance be-
tween the frames. During inference, we first uniformly sam-
ple the source view and later uniformly sample a target view

𝑥!"#$%

𝑥"&'&$% 𝑥#&'&$%

𝑥!"#(%

𝑥"&'&(% 𝑥#&'&(%

Upsample & 
Add Noise

Base NVS Diffusion Model
(𝑁 times)

𝑇!→* 𝐾!"# 𝐾&'&

SR NVS Diffusion Model
(𝑁 times)

𝑇!→* 𝐾!"# 𝐾&'&

𝑡

𝑡

Figure 9. End-to-end inference using our base and super-
resolution (SR) NVS diffusion models.

that is 30-60 (mid) or 60-120 (long) frames apart. Source
views that do not have possible targets at the appropriate
frame distance are filtered out. We have noticed that tai-
loring the distance between frames to 30-120 (the relevant
distance) during training is not beneficial for image quality
or metrics.

For sampling with the base model, we employ Classifier-
Free Guidance [11] (CFG) using a separate unconditional
diffusion model, following EDM2 [17], instead of the more
commonly used single model with label dropout. The un-
conditional model does not contain the encoder network,
instead receiving zeros as pose encoding and joint-attention
features. We choose a CFG coefficient of 1.5 for generating
samples from RealEstate10K, and 2.0 for the experiments in
section 4. The EMA values are not tuned further for CFG.

A.2. Cascaded Diffusion and Super-Resolution
As detailed in subsection 3.1, we use a cascaded diffusion
model design to retain the pixel-space information used in
NVS. Thus, a super-resolution (SR) model is trained sepa-
rately from the base model. Specifically, the task of NVS
super-resolution is a relatively simple task, having both the
low frequency information from the low-resolution condi-
tioning image and the high-frequency semantics and texture
from the source view. For this reason, we opt to use an SR

https://github.com/apple/ml-vivid
https://github.com/apple/ml-vivid


Model Batch Size Training Iterations Base Channel Width Learning Rate EMA

Base (Ablation) 512 218 128 0.012 -
Base (Final) 1024 220 128 0.012 0.1
Base (For CFG) 1024 219 128 0.012 0.05
SR 256 220 64 0.01 0.05

Table 4. Training Hyperparameters.

model with smaller capacity and batch size, and a shorter
training time. Additionally, to alleviate the distribution gap
between ground-truth and generated low-resolution condi-
tions, we add white Gaussian noise to the conditioning im-
age before using it as an input to the SR model, as proposed
in [13]. We find that noise of standard deviation 0.25 works
well. Our end-to-end inference system (including the base
and SR models) is depicted in Figure 9.

While our SR model in this work was limited to 256 ×
256 images due to the constrains of available data, our
method could be extended to even higher resolutions. This
could be doen by training an alternative SR model from
64 × 64 to a new high resolution, or training additional SR
models as needed. As described above, the SR models are
relatively small compared to the base model, and should
scale in a straightforward manner to higher resolutions.

B. Geometry Encoding Ablation Details
B.1. Pose Embedding
To apply our pose embedding, we encode the camera infor-
mation into a 20-element encoding, as such:

Epose = concat (flatten (Tt→s) , fsrc, psrc, ftgt, ptgt)
(1)

Where f and p are the focal length and principle point ex-
tracted from the intrinsic matrixes Ksrc and Ktgt. The em-
bedding conditions each U-Net block using a single fully-
connected layer and summation, similarly to class embed-
ding conditioning in EDM2 [17]. The embedding is normal-
ized to zero mean and standard deviation of one using pre-
computed estimations based on 64× 64 source-target pairs
from RealEstate10K. For the 256 × 256 SR model the em-
bedding is altered by extrapolating the statistics of 64× 64
intrinsics to 256× 256 intrinsic matrices. The extrinsics do
not change for the different image resolutions.

B.2. Epipolar Attention Bias
We test the use of epipolar attention bias as a type of ge-
ometric encoding. Our implementation is inspired by the
epipolar attention used in [44], in which an epipolar atten-
tion matrix is computed by using a soft cutoff function (sig-
moid) on the epipolar distance between any two pixels in
the source and target images. In [44], the epipolar attention
matrix multiplies the cross-attention matrices in all layers,

effectively zeroing out the feature correlations that do not
fit the geometry. We opt to use the epipolar attention ma-
trix as an attention bias instead, replacing the multiplication
operator with addition. A soft attention bias enables the
network to transfer information between the source and tar-
get streams even when the information does not strictly fit
the geometric composition, while multiplication by zeroes
strictly prohibits that. Furthermore, we allow each atten-
tion head to learn its own mixing parameter for the epipolar
attention, enabling the network to learn separate heads for
strictly geometric correspondence and semantically signif-
icant features. Specifically, we learn 4 scalars per head in
each attention block, modulating the amplitude (m), tem-
perature (τ ), cutoff (c), and bias (b) for mixing the epipolar
attention bias. The following formula computes our epipo-
lar attention bias (Aepipolar) using the epipolar distance
matrix (Depipolar) and the learnable mixing parameters:

Aepipolar = m · σ(τ · (c−Depipolar)) + b (2)

Specifically, the bias is needed due to the use of joint-
attention, as the epipolar attention bias is only added to the
“cross” part of the attention matrix (i.e., the attention be-
tween source and target view features). The epipolar atten-
tion mixing parameters are initialized such that all elements
of the epipolar attention bias are zero.

B.3. Monocular Depth Estimation
We use the small indoor metric model from DepthAny-
thingV2 [52] to estimate the source image depth. The
depth-map is inverted, normalized by the maximum value
and further normalized across the depth map distribution to
zero mean and standard deviation of one, to have a similar
magnitude to the input source image. While the depth nor-
malization preserves the ordinality of the depth, its metric
accuracy is effectively erased. In any case, since the depth
prediction is not up to scale with the RealEstate10K poses,
the metric accuracy of the MDE is not beneficial for NVS.

B.4. Depth Coordinate Warping
We implement coordinate warping following the method
outlined in GenWarp [37]. We start by creating a 2-
dimensional grid for the source image’s pixels. We then
warp (in 3 dimensions) this grid to the target view using the
monocular depth predicted with the same model used in the



previous section. As a result, we obtain a target view grid
where each pixel points to its matching coordinate from the
source view grid. Finally, we encode both the source and
target grids into 128 Fourier feature maps, and concatenate
them to the encoder and decoder inputs, respectively. This
increases the efficiency of the warping operation by skip-
ping the interpolation step, instead relying on the network
to learn the correlations.

C. Single-Image Augmentation
C.1. Augmentation Implementation Details
We use the OpenImages v5 dataset [20] for the single-
image augmentation experiment. We first center-crop and
resize all images to 512 × 512. Then, we select the
augmentation parameters for the source and target views,
creating two distinct camera poses and matching warp-
ing operations. We uniformly sample the yaw, pitch, and
roll3 as such: (i) with probability 0.5, we sample them
from [−5.5◦, 5.5◦], [−5.5◦, 5.5◦], [0◦, 0◦] and center crop
to 384 × 384; and (ii) otherwise, we sample them from
[−8.3◦, 8.3◦], [−8.3◦, 8.3◦], [−3.5◦, 3.5◦] and center crop
to 320 × 320. These parameters also determine the sim-
ulated geometry, by computing the rotation matrix corre-
sponding to the sampled angles for both the source and
target views. The intrinsic matrix is constructed to match
the statistics of RealEstate10K images, where the focal
length and principle point ate chosen as (307.2, 307.2) and
(256, 256) respectively, for the original 512 × 512 images.
Finally, the produced source and target views are resize to
the appropriate model resolution, and mixed into the train-
ing batches as a constant fraction of every training batch.

C.2. Generalization Quantitative Analysis
We use 20 scenes from the well-established datasets
LLFF [22], MipNeRF-360 [1], and Ref-NeRF [47] to per-
form a qualitative evaluation of the benefit of our proposed
single-image augmentation. We use the preexisting cam-
era poses and intrinsics, rescaled for each scene using a
single scalar value. As a replacement for the “mid” and
“long” distance between frames used in RealEstate10K, we
divide the source-target pairs into ranges based on a certain
LPIPS [57] threshold, chosen for each scene to mitigate the
scene-level scale ambiguity issue.

D. Method Comparison
D.1. Evaluation of Previous Methods
In subsection 3.3, we compare our work to previous NVS
methods. While we mostly follow the evaluation strategy
outlined in GenWarp [37], their use of data filtering and the

3We use the COLMAP [34, 35] coordinates, where x, y, and z axes
point left, down, and forward respectively.

lack of explicit data sampling procedures prevent us from
performing the exact same evaluation as in previously pub-
lished results. For this reason, we employ our own source
and target view procedures for evaluation (as detailed in Ap-
pendix A). We use the officially published code for evaluat-
ing GeoGPT [29], PhotoNVS [54], and GenWarp [37]. All
models were evaluated on the 256 × 256 resolution. Be-
cause GeoGPT and GenWarp were trained to operate in dif-
ferent resolutions (208 × 368 and 512 × 512 respectively)
we resize the source center-cropped 360×360 images from
RealEstate10K [59] to the relevant resolution before the
NVS operation, and then resize again to 256 × 256 to per-
form the evaluation. Additionally, GeoGPT uses 3D points
(based on COLMAP [34, 35] from the entire scene) to scale
its estimated depth input and solve the NVS task. This gives
GeoGPT an unfair advantage other alternative methods for
which the scale ambiguity problem remains. For GenWarp,
we used the publicly available checkpoints, which are not
trained exclusively on RealEstate10K, as no RealEstate10K
model is publicly available.

D.2. Additional Metrics for Method Comparison
We augment the comparison in Table 2 with 3 additional
metrics: (i) Joint FID [5] (JFID), which is a Fréchet distance
over concatenated features from both the source and target
(ground-truth or generated) images; (ii) Fréchet distance
computed in the DINOv2 [25] space following [17, 41],
named FDD (Fréchet DINOv2 Distance); and (iii) JFDD
(Joint Fréchet DINOv2 Distance), which is the same as
JFID but using DINOv2 instead of Inception. The full re-
sults are shown in Table 6. The source image is included
in the table to provide a frame of reference for the differ-
ent metrics. We expect the source image to achieve high
perceptual quality in the metrics, because the source and
target images are both drawn from the same dataset, and
thus in theory they should have the same probability distri-
bution.4 At the same time, the PSNR of the source images
is consistently subpar compared to NVS methods, as (obvi-
ously) the source views do not solve the NVS task. To quan-
tify the perceptual quality of a generated sample that does
solve the NVS task we propose using JFID [5], a metric that
attempts to measure similarity of conditional distributions.
The source image under-performs all NVS methods in JFID
as expected. Our method (named “VIVID (RE10K)” in the
table) is superior to all the tested methods in JFID, in line
with the improvement in both FID and PSNR, making it
state-of-the-art across all metrics in both mid- and long-
range. The results shown in FDD and JFDD corroborate
our conclusions, and provide more robust perceptual qual-
ity metrics [41]. Finally, we also include the version of our
model trained on both RealEstate10K and OpenImages as

4FID is limited here to 10K images, creating a discrepancy between the
empirical distributions of source and target views.



GeoGPT [29] 0.23
PhotoNVS [54] 36.12
GenWarp [37] 0.67
VIVID 0.90
VIVID-Fast 0.41

Table 5. Comparison of NVS inference times for different meth-
ods, in seconds per image.

“VIVID (RE10K + OI)” in the table, showing that training
on single-view data with our proposed 10% augmentation
does not degrade performance on RealEstate10K, and even
offers a slight improvement.

D.3. Inference and Training Time Comparison
We compare inference training times for the methods dis-
cussed in this section. Table 5 shows the sampling time per
image, measured by generating 1000 samples on a single
A100 GPU. We also test VIVID-Fast, our model with less
diffusion steps and no CFG, which maintains similar FID
and PSNR to our regular model (superior to all other op-
tions).

For training, VIVID training consumed 18k A100 GPU
hours. To compare, GenWarp consumed an equivalent of
5k (+151k for Stable Diffusion pretraining). PhotoNVS and
GeoGPT did not report compute numbers.

D.4. Comparison of Fine Details
Figure 10 demonstrates the advantage of our model in
the retention of fine details, which stems from our use of
cascaded source-conditioned diffusion models in the pixel
space instead of latent autoencoders. For this experiment,
all images were resized to 256 × 256 before being resized
again to the model’s input size. This was done to ensure
all models receive information in equal resolution, for the
fairness of comparing fine details.

E. Additional Results
E.1. Generated Videos
In this paper, we do not directly address multi-generation
consistency, but rather focus on improving image-to-image
NVS performance. That being said, we can still demon-
strate effective multi-frame consistency by producing auto-
regressive NVS videos (starting from a source frame, and
following a multi-frame camera trajectory from the test set).
Figure 11 shows several frames of videos generated in this
manner, proving that consistency to the source image is
maintained.

E.2. Additional Generalization Examples
Figure 12 shows additional qualitative examples for gener-
alization with our model on images from OpenImages.

O
ur

s
G

T 
Ta

rg
et

So
ur

ce
G

en
W

ar
p

Ph
ot

oN
VS

G
eo

G
PT

Figure 10. Example of fine detail retained by our model, compared
to alternative latent-diffusion-based methods.

Figure 11. 2 NVS videos generated with VIVID auto-regressively.



Input ViewNovel View Novel View Input ViewNovel View Novel View

Figure 12. Additional examples for generalization from the OpenImages dataset, exhibiting rotation (left) and translation (right).

Mid-range Long-range
Method FID ↓ PSNR ↑ JFID ↓ FDD ↓ JFDD ↓ FID ↓ PSNR ↑ JFID ↓ FDD ↓ JFDD ↓
GeoGPT [29] 6.43 14.06 13.19 288.26 444.29 7.22 13.13 13.46 332.49 455.78
PhotoNVS [54] 7.12 13.32 13.62 433.47 559.42 9.22 12.05 15.76 552.42 668.88
GenWarp [37] 5.91 13.43 10.52 68.70 101.39 7.38 12.10 13.62 120.54 171.27
VIVID (RE10K) 2.89 17.36 6.26 41.20 67.43 3.89 15.21 8.18 80.44 118.75
VIVID (RE10K + OI) 2.82 17.38 6.14 38.13 63.37 3.77 15.19 8.02 72.62 109.53

Source Image 2.58 13.12 73.76 19.32 528.71 3.00 11.91 51.07 14.09 309.47

Table 6. Comparison to previous methods, including additional metrics. Evaluation is done on 10K source-target pairs from RealEstate10K.
Best results in each column are in bold, second best are underlined.


	Implementation Details
	Model Architecture & Training
	Cascaded Diffusion and Super-Resolution

	Geometry Encoding Ablation Details
	Pose Embedding
	Epipolar Attention Bias
	Monocular Depth Estimation
	Depth Coordinate Warping

	Single-Image Augmentation
	Augmentation Implementation Details
	Generalization Quantitative Analysis

	Method Comparison
	Evaluation of Previous Methods
	Additional Metrics for Method Comparison
	Inference and Training Time Comparison
	Comparison of Fine Details

	Additional Results
	Generated Videos
	Additional Generalization Examples


