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In this supplementary document, we provide imple-
mentation details in Appendix A, additional evaluations
on Tanks&Temples for pose estimation (Appendix B) and
Waymo Open Dataset for 3D reconstruction (Appendix C).
Next, we test our method on disconnected image collec-
tions, i.e., collections of images of different scenes, in Ap-
pendix D and investigate robustness against drift in Ap-
pendix E. Furthermore, we conduct more ablation studies
to validate our model design in Appendix F, followed by
qualitative visualizations in Appendix G.

A. Implementation Details

Model. Our model adopts the same encoder and decoder
architecture as DUSt3R, i.e., the VIT-L image encoder and
the two pointmap decoding regression heads parameter-
ized by VIT-B [3]. For global alignment, we use L = 4
blocks. Self and Cross are implemented as vanilla self-
and cross-attention layers [17] with 8 attention heads and
pre-normalization. Their feature dimensionality is the same
as the VIT-L encoder dimension, i.e., 1024.
Training. We train our model on four datasets: Waymo
Open Dataset [15], CO3Dv2 [12], MegaDepth [9], and Tar-
tanAir [21]. For training, we sample graphs of N = 8 im-
ages based on pairwise scores proposed in CroCo [22] and
a greedy algorithm which iteratively adds additional images
with maximum viewpoint angle difference w.r.t. all images
already in the set, until the desired number of images is
reached. Images are resized such that their longer side has
length 512 and then center cropped such that the shorter
side is in {384, 336, 288, 256, 160} leading to different as-
pect ratios for training. Further, we apply color jitter aug-
mentation. We initialize our model encoder and decoder us-
ing MASt3R pretrained weights and train for 100,000 iter-
ations with batch size 8 (each batch element corresponds to
one graph of images) using AdamW [10] with learning rate
10−6 and weight decay 5×10−4 on 8 NVIDIA A100-80GB
GPUs. The model on small resolutions (using 224×224) is
trained on 16 NVIDIA V100-32 GPUs with per-GPU batch
size of 2, resulting in overall batch size of 32. We scale the
learning rale linearly with batch size.

Inference. At test time, we extract the global camera pose
from the pointmaps in global reference frame Xi and their
corresponding confidence maps Ci. We follow Wang et al.
[20] and first estimate the focal length with a robust estima-
tor [23] and then proceed to extract the pose with RANSAC-
PnP [5, 16] from points with their corresponding confidence
in Ci larger than a threshold. By default we use a threshold
of 3, or the 90%-quantile if all confidences fall below the
threshold.

To reduce regression noise, we further symmetrize the
edges during inference and combine the pointmap predic-
tions using a confidence-weighted average. In detail, we de-
code the symmetric edge (j, i), now predicting in the ref-
erence frame of image j, for every edge (i, j) ∈ ESPT,
extract the pairwise pose using Procrustes as described in
the main paper, then apply the transformation to the output
pointmaps Xj,i, Xj,j to obtain X̃i,i and X̃i,j respectively.
We then compute the confidence-weighted average for the
pointmaps of the edge (i, j) we are interested in. Here, we
introduce the computation to combine Xi,i and X̃i,i but
it applies symmetrically to Xi,j . First, we compute weight
from the confidences Ci,i corresponding to edge (i, j) and
Cj,i from edge (j, i) as

Gi,i
u,v =

logCi,i
u,v

logCi,i
u,v + logCj,i

u,v

where u ∈ {1, . . . ,W}, v ∈ {1, . . . ,H} are indexing into
the confidence-/pointmaps. Note that the confidence maps
correspond to the same image fed in different position to the
pairwise decoder. We then compute the average-weighted
pointmap as

Xi,i
u,v := (Gi,i

u,v)X
i,i
u,v · (1−Gi,i

u,v)X̃
i,i
u,v

incorporating information from the decoder evaluation of
the symmetric edge, thus refining the pointmap.

B. Additional Details on Tanks & Temples [7]
Runtime evaluation. For completeness, we report the per-
scene reconstruction runtime for all baseline methods in
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Tab. 7. For fair comparison, we run other methods using
their open-source implementation with default parameters
provided with the code on the same base system with 10
CPU cores, 64GB system memory, and one NVIDIA V100
GPU with 32GB VRAM. For MASt3R-SfM [8], we adopt
the hyper-parameters reported in the paper. We have to
do specific adjustment for VGGSfM [19] to fit the GPU
memory budget where we follow their suggestions 1 and
reduce max_points_num to 40, 960 and max_tri_-
points_num to 204, 800, i.e., 1/4 their original values.
However, this still leads to out-of-memory errors when eval-
uating on most of the full sequences and some of the 200-
image sequences supposedly due to excessive amount of
detected keypoints, and thus we do not report the runtime
results in these situations.
Pose accuracy evaluation. In the main paper, we report
pose accuracy at tight error threshold of 5°. In Fig. 1, we
provide a more complete overview of the model perfor-
mance at other thresholds by plotting the pose accuracy
as a function of the error threshold for both relative ro-
tation and translation errors. We observe a gap at tight
thresholds between feed-forward approaches (Light3R-
SfM, Spann3R [18]) and optimization-based approaches,
however, this gap rapidly shrinks for our method when mov-
ing towards looser thresholds, while Spann3R is consis-
tently worse. This suggests that Light3R-SfM is generally
able to locate the correct positions and orientations of cam-
eras while struggling to regress the exact values which is
more easily achieved via optimization.

For some downstream applications that perform pose
refinement, e.g., novel-view synthesis via Gaussian splat-
ting [6], these coarse poses might already be sufficient and
can directly enjoy the significant speed-ups of up to 198×
of our method. Further, these results suggest that a small op-
timization stage on top of the regressed outputs, converging
fast due to good initialization, could significantly increase
performance at tight thresholds. We leave investigation into
this direction to future work.

C. Evaluation on 3D Reconstruction
We further evaluate our method on 3D reconstruction us-
ing Waymo Open Dataset [15]. We evaluate the quality of
the global predicted point cloud per scene by computing
the Chamfer distance [1] w.r.t. the sparse lidar ground-truth
point cloud. For this, we find the nearest neighbor for every
ground truth point and compute the euclidean distance, then
compute the average. We compare ourselves to Spann3R
and MASt3R-SfM, as well as a variant of our method with-
out latent global alignment. In Fig. 3, we report the cumula-
tive distribution function of per-scene reconstruction errors
as measured by the Chamfer distance.

1https : / / github . com / facebookresearch / vggsfm /
blob/main/README.md
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Figure 1. CDF of pose errors on 100-view Tanks&Temples
scenes.

We show that our methods with and without latent global
alignment are both able to largely outperform Spann3R,
producing point cloud with smaller reconstruction errors for
most of the scenes. It confirms the limitation of Spann3R
in handling non-object-centric, natural scenes. We further
highlight that our method with latent global alignment
module is significantly better than the baseline without it
(w/o lat.align), validating its effectiveness to ensure global
consistency across pairwise pointmaps, even for the long,
forward-moving trajectories.

Compared to the optimization-based MASt3R-SfM,
Light3R-SfM manages to produce a subset of reconstruc-
tions with lower reconstruction errors. However, there is
also a proportion of scenes where our method falls behind.
After investigation, we find that these scenes contain many
dynamic objects. Light3R-SfM was mostly trained on static
scenes, and thus often assigns confidence to portions of
the pointmap that are dynamic resulting in wrong pairwise
pose estimates, affecting global accumulation, and thus de-
grading global reconstructions. For illustration, we visual-
ize the confidence map for such a dynamic scene in Fig. 2.
MASt3R-SfM, despite building on top of MASt3R as well,

https://github.com/facebookresearch/vggsfm/blob/main/README.md
https://github.com/facebookresearch/vggsfm/blob/main/README.md
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Figure 2. Global confidence map (right) produced by Light3R-
SfM for an image of a sequence containing dynamic objects (left).

10−1 100 101 102

Chamfer distance [m]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

MASt3R-SfM
Spann3r
Light3R-SfM (wo/ lat. align)
Light3R-SfM

Figure 3. CDF of per-scene 3D reconstruction errors.

7scenes Waymo

Acc. ↓ Comp. ↓ Acc. ↓ Comp. ↓
Spann3R 0.0108 0.0104 7.114 23.486
DUSt3R (global opt.) 0.0133 0.0108 OOM
Ours (w/o latent align.) 0.0111 0.0241 5.942 9.506
Ours 0.0111 0.0196 5.065 2.620

Table 1. 3D reconstruction metrics on 7scenes [14] and Waymo
Open Dataset [15]

performs better in these situations as erroneous correspon-
dences on dynamic objects are discounted by a robust error
function during optimization. We believe Light3R-SfM will
be able to handle these scenes by training on more diverse
datasets containing dynamic objects, as the global supervi-
sion will encourage low confidence for dynamic parts of the
image.

We report median accuracy and completion metrics on
7Scenes [14] few-view setting following Spann3R in Tab. 1.
All methods are evaluated on 224 × 224 resolution images
for a fair comparison.

As shown in Tab. 1, Light3R-SfM produces competitive
results on 7scenes and we observe that latent global align-
ment improves 3D reconstruction. We believe that scaling
compute and incorporating indoor training data will further

Reg. RRA@5 RTA@5 RRA@15 RTA@15 ATE

Indp. 1.0 77.21 83.25 94.13 93.21 0.0175
Merged 0.87 74.65 79.69 94.83 93.89 0.0165

Table 2. Comparison of pose accuracy when processing each im-
age collections vs. all image collections merged into one.

close this gap. On Waymo Open Dataset, our method signif-
icantly outperforms Spann3R demonstrating its scalability
to large scenes.

D. Handling disconnected image collections.
In many real world scenarios image collections might ei-
ther contain invalid images, e.g., images that are not visu-
ally overlapping with the contents depcited in most of the
other images, or the image collection might itself contain
subsets of images showing different scenes.

To investigate the robustness of Light3R-SfM in these
cases we create such a scenario by merging all eight 25-
view scenes from the Tanks&Temples intermediate split
into a single image collection. We then identify discon-
nected sub-reconstructions by filtering edges with an aver-
age pointmap confidence below 3. For each scene, we retain
only the largest sub-reconstruction, treating all other images
as unregistered.

As shown in Tab. 2, our method successfully registers
87% of all images across eight scenes while maintaining
similar accuracy to processing each scene independently.
This demonstrates that (i) our graph construction ensures lo-
cally consistent connections and (ii) our learned confidence
maps effectively reject artificial connections. We agree that
adaptively constructing a new view-graph is a promising di-
rection for further improvement.

E. Drift analysis.
We qualitatively compare ground truth and predicted cam-
era trajectories on the held-out ”Gascola” scene from Tar-
tanAir (as test set ground truth poses are unavailable). Run-
ning our method on shorter sequences, like Easy/P001,
yields drift-free trajectories. For the sequence Hard/P009
with loop closures, we use a five-frame sliding window for
all methods to mitigate ambiguity from extreme visual sim-
ilarity. As shown in Fig. 4, Light3R-SfM exhibits some
drift, however, it remains more robust than other meth-
ods—GLOMAP recovers only 464 of 764 views, while
MASt3R-SfM and Spann3R fail to recover any trajectory.

F. Additional Ablation Studies
In addition to the ablation studies performed in the main
paper, we consider more detailed ablations for hyper-
parameters specific to our contributions. To save compute,
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Figure 4. Predicted camera trajectories for two scenes of the Tar-
tanAir dataset.

RRA@5 ↑ RTA@5 ↑ ATE ↓
L

2 33.1 35.5 0.033
4 35.7 36.9 0.032
8 35.3 36.9 0.032

Table 3. Impact of number of latent alignment layers L.

we train the models for these ablation studies on lower reso-
lution images, i.e., 224×224, versus a maximum resolution
of 512× 384 for the results reported in the main paper. For
these experiments, we report results on the 100-view subset
of Tanks&Temples unless otherwise stated.
Global alignment layers. For results reported in the main
paper, we always consider L = 4 latent global align-
ment layers. Here we ablate this choice by considering
L ∈ {2, 4, 8}. In Tab. 3, we report pose accuracy metrics for
the different settings of L. Using 4 latent alignment layers
significantly improves results compared to 2, but doubling
the number shows diminishing returns, leading us to select
L = 4 as a trade-off between memory usage/runtime and
pose accuracy.
Weight of global supervision. For the loss supervising the
globally aligned pointmaps, accumulated from the pairwise
reconstructions, we consider λ = 0.1 as the default. Here,
we experiment with other choices of λ.

In Tab. 4, we report pose accuracy metrics for choices
λ ∈ {0.01, 0.1, 1.0}. We find that increasing the loss weight
from 0.01 to 0.1 improves pose estimation, however, the
higher setting of λ = 1.0 decreases performance. We ex-
plain this behavior with the fact that the global loss produces
more noisy supervision compared to the pairwise loss: if a
pairwise reconstruction is incorrect it will potentially affects
global pointmaps of other views due to global accumula-
tion. Thus, it is beneficial when the pairwise supervision
is the main driver of the optimization of model parameters
where the global supervision acts as a contributing signal
with relative lower weight.

RRA@5 ↑ RTA@5 ↑ ATE ↓
λ

0.01 30.6 33.3 0.034
0.1 35.7 36.9 0.032
1 34.5 36.8 0.031

Table 4. Impact of weight of global supervision λ.

RRA@5 ↑ RTA@5 ↑ ATE ↓
Backbone init.

Scratch 0.7 0.1 0.057
DUSt3R 35.7 36.9 0.032
MASt3R 34.6 38.6 0.032

Table 5. Impact of backbone initialization.

RRA@5 ↑ RTA@5 ↑ ATE ↓
N

3 37.3 38.1 0.033
5 38.0 39.4 0.030
8 39.0 39.5 0.030
10 39.2 40.7 0.031

Table 6. Impact of training graph size N . We report results av-
eraged over Tanks&Temples scenes with all frames.

Number of images in training graph. All results in the
main paper are achieved with models optimized with train-
ing graphs of N = 8 images. In Tab. 6, we report results
for N ∈ {3, 5, 8, 10}. To achieve a fair comparison we in-
crease the batch size for smaller settings of N such that the
total number of images per batch and seen over the course
of training remains the same. Overall, we find a small but
consistent improvement for larger training graphs. We ex-
plain this consistent improvement by the number of relative
constraints in the training graph increasing as the size of
the graph increases. With global supervision enforcing con-
sistency of these pairwise constraints the latent alignment
layers experience additional supervision leading to better
downstream performance. While we achieve better perfor-
mance on N = 10, we use N = 8 for the higher resolution
model in the main paper since larger training graphs exceed
the GPU memory capacity.
Model initialization. In Tab. 5, we report results with dif-
ferent pre-trained weights for the pairwise pointmap regres-
sor used within our method. We find that initializing with
either MASt3R [8] or the DUSt3R [20] backbone leads to
comparable results. If we train the pairwise regressor from
scratch, jointly with the other components, we observe that
the model performs poorly. This highlights the significance



of building on top of geometric foundation models as com-
ponents for our approach.

G. Additional Visualizations
Reconstruction examples. We provide visualizations of
reconstructions obtained using Light3R-SfM. In Fig. 5, we
show reconstruction of diverse Tanks&Temples scenes, in-
cluding indoor, object-centric, and large scale reconstruc-
tions of landmarks. Further, we provide qualitative results
on the challenging ETH3D [13] scenes in Fig. 6.
Qualitative comparisons on Waymo sequences. We pro-
vide additional qualitative comparison of 3D reconstruc-
tions from the Waymo Open Dataset [15] obtained by
MASt3R-SfM, Spann3R, and Light3R-SfM. As shown in
Fig. 7, Spann3R fails to reconstruct the camera poses as
well as the scene structure when the trajectory is longer,
while MASt3R-SfM fails to recover the boundary and fur-
ther away background regions, leading to noisy and coarse
reconstruction. In contrast, our method is able to recover
accurate camera poses as well as capture fine details in the
scene, e.g., cars and buildings along the street.
Failure cases. Finally, we provide visualizations of typical
failure cases in Fig. 8. We observed that retrieval failures
can result in multiple sub-reconstructions which are aligned
within themselves but globally inconsistent. Further, small
errors in the pairwise estimations result in misalignment in
the global reconstruction.
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Figure 5. Qualitative examples of reconstruction of Tanks & Temples scenes.
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Figure 6. Qualitative examples of reconstruction of ETH3D scenes.



Figure 7. More comparisons on Waymo. Comparing from left-to-right: MASt3R-SfM, Spann3R, Light3R-SfM.



Museum Courthouse Truck

Figure 8. Failure cases on the Tanks & Temples dataset.
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A
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Auditorium 1113.5 288.1 90.7 10.4 10.3 5.8
Ballroom 1141.6 294.3 167.3 25.4 7.6 4.3
Courtroom 1534.4 290.3 125.2 10.9 7.1 4.3
Museum 917.4 287.0 155.2 15.5 8.7 4.4
Palace - 286.3 219.7 7.3 7.3 3.9
Temple - 285.0 241.2 9.4 7.7 4.1

In
te

rm
ed

ia
te

Family 1334.7 285.4 83.5 20.1 10.9 5.6
Francis 970.6 277.8 80.1 13.0 7.5 3.9
Horse 980.2 287.1 66.9 29.3 11.8 5.5
Lighthouse 881.5 282.0 110.7 7.6 7.3 3.7
M60 826.8 268.0 191.7 22.3 7.0 3.8
Panther 831.1 268.5 140.5 14.4 7.0 4.0
Playground 866.5 291.1 97.6 8.0 8.3 4.4
Train - 290.5 114.2 19.8 7.8 4.4

Tr
ai

n

Barn 986.6 273.6 140.9 10.4 8.8 4.4
Caterpillar 1229.5 285.4 79.3 15.1 7.2 4.4
Church 1088.3 268.4 111.4 24.0 9.9 4.4
Courthouse - 293.0 328.4 18.0 8.8 3.7
Ignatius 931.6 262.5 75.7 16.9 6.9 4.3
Meetingroom 1165.0 280.7 127.7 12.2 9.1 4.1
Truck 926.3 301.8 102.3 27.8 8.0 4.6

50

A
dv
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d

Auditorium 1497.2 532.4 282.0 32.5 20.5 10.5
Ballroom 1848.6 529.1 272.5 110.9 14.7 9.0
Courtroom 1480.7 505.6 415.5 32.6 16.3 8.8
Museum 992.5 468.8 670.5 48.4 17.8 8.1
Palace - 486.1 601.1 21.7 16.3 7.6
Temple - 481.7 499.9 25.0 16.3 8.5

In
te

rm
ed

ia
te

Family 2140.4 491.7 143.8 81.2 21.8 11.4
Francis 1226.7 498.8 120.0 47.2 14.5 7.3
Horse 2604.0 497.3 184.6 68.5 22.6 10.8
Lighthouse 1324.7 476.6 270.6 40.8 14.7 7.2
M60 1304.3 457.4 267.9 34.6 14.3 7.2
Panther 2072.7 456.4 178.4 52.0 13.9 7.2
Playground 1105.8 499.8 202.3 25.6 17.8 8.4
Train 1097.9 526.7 217.0 41.3 14.7 8.4

Tr
ai

n

Barn 973.3 522.5 340.2 30.8 16.5 8.0
Caterpillar 1110.3 530.9 151.7 37.4 14.4 8.2
Church 1551.0 505.0 413.9 38.5 19.1 8.4
Courthouse 1014.6 508.3 305.9 41.3 17.2 8.0
Ignatius 2724.5 485.2 144.7 47.2 14.4 8.3
Meetingroom 1451.1 566.7 252.2 72.8 19.2 8.1
Truck 1549.9 535.1 183.0 67.8 13.4 8.7

10
0

A
dv

an
ce

d

Auditorium 4885.4 931.7 740.7 85.2 37.9 19.2
Ballroom 1987.4 909.4 732.2 448.7 26.5 17.5
Courtroom 4942.5 931.9 850.2 127.7 28.9 17.0
Museum 5031.7 848.5 768.0 172.2 34.6 16.5
Palace 1670.7 885.1 1934.4 87.4 32.2 15.7
Temple 1126.2 831.4 1169.3 97.8 31.9 16.5

In
te

rm
ed

ia
te

Family 2275.3 890.7 391.7 236.3 42.8 22.3
Francis 4689.7 909.8 365.1 147.3 26.5 14.8
Horse 3882.0 909.5 351.9 189.2 43.5 21.1
Lighthouse 2590.9 845.2 512.1 128.9 28.5 14.0
M60 1800.5 813.5 522.6 127.2 25.9 14.5
Panther 1659.3 798.0 488.4 173.9 26.3 14.5
Playground 1303.4 888.5 456.9 100.8 33.0 17.0
Train 4441.7 930.8 789.5 144.3 29.5 16.4

Tr
ai

n

Barn 7502.6 811.7 605.9 98.0 30.7 16.6
Caterpillar 5145.0 857.4 373.1 120.9 25.8 16.8
Church 3242.8 821.2 782.0 201.9 34.5 16.6
Courthouse 990.9 838.3 1043.8 127.5 32.0 15.2
Ignatius 2378.6 758.4 379.3 156.1 25.4 16.3
Meetingroom 6338.4 874.5 526.6 203.5 31.8 16.2
Truck 3367.2 805.5 495.9 234.2 25.3 17.2

20
0

A
dv

an
ce

d

Auditorium 5388.1 1748.6 2185.9 349.0 71.1 37.1
Ballroom 3782.7 1680.6 1779.0 1466.7 53.1 35.3
Courtroom 3245.0 1758.6 1886.8 453.8 58.1 34.6
Museum 3952.1 1661.4 2162.8 634.0 68.7 33.2
Palace 3267.1 1747.5 3910.8 324.6 64.0 31.3
Temple 1480.1 1659.4 2221.5 309.2 59.0 33.3

In
te

rm
ed

ia
te

Family 2349.0 1598.7 679.2 667.0 83.7 44.3
Francis 3522.3 1654.0 846.6 462.9 55.8 29.6
Horse 4176.3 1610.1 624.4 558.8 88.9 41.9
Lighthouse 9072.2 1573.2 1411.4 455.9 54.5 28.0
M60 5080.5 1481.3 1198.5 453.5 49.9 28.8
Panther 3837.3 1461.8 1134.0 560.2 49.8 28.7
Playground 8317.4 1578.9 1010.1 360.0 61.4 33.1
Train 4022.3 1585.0 1638.5 503.0 54.3 32.9

Tr
ai

n
Barn 6885.8 1504.8 - 349.2 56.6 33.5
Caterpillar 5360.8 1610.9 1066.4 386.8 49.0 33.9
Church 4418.7 1577.1 - 522.5 69.7 34.3
Courthouse 8604.2 1598.8 - 358.5 59.4 30.8
Ignatius 2565.2 1521.1 873.9 533.0 51.9 31.5
Meetingroom 4025.3 1645.4 - 697.6 59.6 32.0
Truck 3340.0 1531.7 1067.0 865.3 50.2 34.5

fu
ll

A
dv

an
ce

d

Auditorium 4713.9 2349.4 2739.6 544.8 76.8 46.5
Ballroom 4462.5 2639.0 - 3407.7 83.6 55.7
Courtroom 3907.0 2556.5 - 975.6 80.5 50.4
Museum 5030.7 2422.9 - 1168.9 95.2 49.5
Palace 3856.3 3519.4 - 1537.4 132.5 66.6
Temple 6103.9 2187.3 - 758.2 85.9 47.6

In
te

rm
ed

ia
te

Family 3655.3 3696.1 - 3396.7 207.5 110.1
Francis 4380.5 2369.8 - 961.9 80.0 45.2
Horse 4589.4 3641.7 - 2507.3 223.4 100.4
Lighthouse 8594.3 2244.1 - 940.7 84.8 41.4
M60 5796.9 2174.1 - 1094.1 80.2 44.4
Panther 4102.6 2174.4 - 1317.5 77.8 44.4
Playground 7335.7 2316.1 - 894.1 104.0 49.3
Train 7334.8 2487.8 - 1099.4 84.3 48.2

Tr
ai

n

Barn 8072.1 2933.4 - 1558.5 123.1 66.1
Caterpillar 5909.6 2989.8 - 1182.6 93.8 62.9
Church 5491.6 3590.2 - 2988.4 175.1 84.4
Courthouse 11817.4 - - 10656.7 318.5 177.4
Ignatius 2407.4 - - 844.2 67.1 40.6
Meetingroom 4440.0 - - 2422.2 103.9 58.7
Truck 3488.5 - 1528.8 1274.3 63.3 41.5

Table 7. Per-scene reconstruction runtimes on Tanks&Temples. All runtimes are reported in seconds.
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