Volumetric Surfaces: Representing Fuzzy Geometries with Layered Meshes

Supplementary Material

In this supplementary material, we provide additional ar-
chitectural and technical details (Section S1), further vi-
sualizations (Section S2), comprehensive per-scene results
(Section S3), and an in-depth analysis of performance on
fully solid geometries (Section S4).

S1. Additional Technical Information

[scheduling details: During training, the 8 parameter
is controlled by the scheduling of v as 3 = €'°”. During
the main surface training phase, v linearly transitions from
v1 = 0.3to v = 0.7. During the training of k£-SDF, it further
progresses from vo = 0.7 to v3 = 1.0. At (2, the logistic
distribution standard deviation is approximately 0.001. We
use this value to initialize offsets as constants (Ao). By the
end of implicit surface training (/3), it decreases to 0.00008,
resulting in fully peaked densities.

k-SDF Architecture: We encode 3D points using the train-
able positional encoding from Rosu and Behnke [44], fol-
lowed by a small MLP with three layers of 32 features each.
Hidden layers employ GELU activations, while the final layer
uses a linear activation to output the signed distance d (our
main SDF) and a geometric feature vector z. We predict
relative offsets using tiny MLP heads (a single layer with 32
units) with independent parameters, taking only z as input.
This ensures that model complexity scales with the number
of surfaces. To enforce the sign of the predicted offset, we
apply a softplus activation multiplied by the desired sign.
Finally, we compute the final ordered offsets by performing a
cumulative sum over the predicted relative offsets, separately
for negative and positive values.

Volumetric Appearance Architectures: We model RGB
and transparency as two networks with identical architec-
tures, differing only in their output dimensions (3 for RGB
and 1 for transparency). Both models encode 3D points us-
ing the trainable positional encoding from Rosu and Behnke
[44], followed by an MLP with three layers of 128, 128, and
64 features, respectively. Its input consists of the encoded
position, a spherical harmonics encoding (with degree 3)
of the view direction v, the normal vector of the rendered
SDF n and the geometric feature vector z predicted by k-
SDF. Normals are computed as the normalized gradients of
the SDFs; gradients are computed with finite differences,
€ = 10~*. Hidden layers use GELU activations, while the
final layer applies a Sigmoid activation to produce outputs
in the range [0, 1].

Neural Textures Architecture: During the mesh texturing

phase, we use separate neural texture models for RGB and
transparency per mesh. We encode 2D UV coordinates using
the trainable positional encoding from Miiller et al. [35],
followed by a small MLP with two layers of 64 features each.
Hidden layers use ReLU activations, while the final layer
applies a linear activation to output per-channel spherical
harmonics (SH) coefficients of degree 3, which are then
decoded with view direction v.

Points sampling: During volumetric rendering the number
of uniformly sampled points per ray in the foreground area
of the scene is 64. On top of these, 32 points are added with
importance sampling. Additionally, if a scene is unbounded
(e.g. DTU), we sample 32 additional points in contracted
space [3]. Rays batch size is defined w.r.t. a target number of
sample points which is up to a maximum of 512 x 64 x 32
points.

Data handling: We use MVDatasets [11]toload datasets,
manage training loop pixel iterators, and perform ray casting.

S2. Additional Visualizations

We provide additional qualitative comparisons on our eval-
uation scenes of the DTU [21] dataset. Additionally, we
provide visualizations of per-surface rendering before alpha
blending (Figure S1 and Figure S3) to illustrate how each
layer, based on its position and opacity, contributes with its
view-dependent appearance model to the final image. Fi-
nally, we visualize results from Table 2. Figure S5 presents
a qualitative comparison between a render of our 7-Mesh
model, 3DGS [24], and 3DGS-75K. Figure S6 compares our
5-Mesh model to MobileNeRF [7].

S2.1. Transparency Attenuation

We introduced transparency attenuation in Section 4.2 to re-
duce visual artifacts at object boundaries. Figure S2, cropped
from our ablation experiments (Section 5.1), highlights its
significance in our method.

S3. Per-scene Results

Table S1, Table S2 and Table S3 present the per-scene values
that are averaged in Table 3.

S4. Fully Solid Scenes

Although not our targeted use case, we tested our method
on the fully solid scenes of the NeRF-Synthetic dataset [34],
which lacks fuzzy objects. As noted in Section 5.2, our advan-
tages in these scenes are marginal. While we outperform Per-
mutoSDF [44], our quality remains behind other baselines.

v

a) Surface normals.

| 4

b) Surface UVs.

c) Surface opacity.

4

d) Blending weights (contributions).

.4

4
*

e) Surface colors (RGB).

Figure S1. Visualization of render buffers from our 5-Mesh model. Layers order: left to right is inner to outer. Individual layer color and
alpha buffers are blended as described in Section 4.2. Results on the khady scene from Shelly [56].

b) with ayy

a) without ay

Figure S2. (a) Rendering error crop (averaged over color channels)
without and (b) with transparency-decay, resulting in a 2.13 dB
PSNR gain. Scene from the Shelly [56].

We model fuzzy surfaces by optimizing sample distribution
rather than reconstructing high-frequency geometric details,

as spatial sampling is key to accurately capturing these ef-
fects. By favoring smoother surfaces, our method tends to
reconstruct overly simplified geometry in under-observed ar-
eas (Figure S7). Fully solid scenes can be optimally modeled
as a single surface. However, SDF-based methods struggle in
handling thin structures, as optimization often fails to recon-
struct them reliably (e.g., BakedSDF [60], BOG [43]). Our
surface smoothing, combined with view-dependent trans-
parency, often leads to thin structures being reconstructed as
view-dependent effects (Figure S8). As a result, our model
tends to overfit training views, leading to a larger quality gap
between training and test views (Table S4).

a) Surface normals.

b) Surface UVs.

¢) Surface opacity.

d) Blending weights (contributions).

e) Surface colors (RGB).

Figure S3. Visualization of render buffers from our 7-Mesh model. Layers order: left to right is inner to outer. Individual layer colors and
alpha buffers are blended as described in Section 4.2. Results our custom plushy scene.

PermutoSDF 7-Mesh (ours) PermutoSDF 7-Mesh (ours)

3DGS Ground truth 3DGS Ground truth

Figure S4. Qualitative comparison of our 7-Mesh model with PermutoSDF [44] and 3DGS [24]. Scenes from the DTU dataset [21].

Table S1. Per-scene results for baselines. Refer to Table 3 for averaged results. Metrics not provided are denoted with “—”. PermutoSDF
trained until densities are fully peaked (¢,). The hairy monkey scene is from Sharma et al. [47].

| PermutoSDF [44] | 3DGS [24] MobileNeRF [7]
Dataset | Scene | PSNRT SSIMt LPIPS| | PSNRT SSIM+ LPIPS| | PSNRT SSIM{ LPIPS |
fernvase 2842 0953 0.078 | 3482 098 0.040 | 29.06 0957 0.088
horse 3468 0993 0040 | 4145 0997 0.038 | 3331 0988 0.065
Shelly [36] | <hady 2622 0879 0226 | 3054 0924 0187 | 2642 0877 0.228
YOI kitten 3091 0971 0093 | 3817 0991 0.050 | 3022 0968 0.098
pug 2948 0953 0.168 | 3596 0983 0089 | 2857 0927 0.197
woolly 2939 0949 0.167 | 3171 0969 0.130 | 2820 0919 0221
Custom hairy monkey | 33.67 0977 0.194 | 37.67 0990 0.142 | 3025 0949 0.200
plushy 3294 0945 0192 | 37.02 0975 0.153 | 3153 0934 0.190
DTU 21 | S@n 105 3478 0985 0.124 | 3550 0984 0.102 — — —
scan 83 37.84 0991 0072 | 4061 0994 0.070 — — —

b) 7-Mesh (ours)

¢) 3DGS-75K d) Ground truth
Figure S5. 3DGS [24] demonstrates superior performance in modeling thin structures but is significantly less effective in representing large,

textured areas. Our method renders faster than 3DGS-75K on mobile devices. Results on the khady scene from Shelly [56]. Quantitative
results are in Table 2.

Table S2. Our per-scene results. The hairy monkey scene is from Sharma et al. [47]. Refer to Table 3 for averaged results.

‘ 3-Mesh ‘ 5-Mesh
Dataset | Scene | PSNRT SSIMT LPIPS| | PSNRT SSIM?t LPIPS |
fernvase 3241 0985 0066 | 33.63 0988 0.064
horse 3834 0998 0038 | 3978 0998 0.034
khady 2978 0938 0.193 | 2988 0941 0.194
Shelly [561 | 4iiren 3584 0991 0078 | 3685 0992 0076
pug 3372 0983 0.138 | 3425 0985 0.132
woolly 3026 0973 0175 | 31.12 0978 0.162
Custom hairy monkey | 3559 0984 0178 | 3590 0985 0.179
plushy 3441 0957 0.164 | 3499 0965 0.164
bTU 1] | fean 105 3477 0980 0.120 | 3540 0982 0.106
scan 83 3805 0990 0064 | 3834 0990 0.063

a) 5-Mesh (ours) b) MobileNeRF ¢) Ground truth

Figure S6. Our method surpasses MobileNeRF [7] in modeling volumetric hair while also achieving superior performance on flat surfaces.
Results on hairy monkey from QuadFields [47], our custom plushy scene and khady from Shelly [56]. Quantitative results are in Table 2.

Figure S7. Visualization of surface normals from our 7-Mesh model. Scene from NeRF-Synthetic [34].

Table S3. Our per-scene results. The hairy monkey scene is from Sharma et al. [47]. Refer to Table 3 for averaged results.

| 7-Mesh | 9-Mesh
Dataset | Scene | PSNR+ SSIMt LPIPS| | PSNRT SSIM? LPIPS |
fernvase 34.55 0.990 0.062 34.64 0.991 0.062
horse 40.05 0.998 0.033 3932 0.998 0.034
khady 2997 0.942 0.194 2096 0.943 0.195
Shelly [561' | 4irren 37.11 0.993 0.074 37.05 0.993 0.074
pug 34.25 0.985 0.132 3424 0.985 0.133
woolly 31.04 0978 0.158 31.05 0.978 0.160
Customm hairy monkey | 36.09 0.987 0.177 36.14 0.987 0.175
plushy 3518 0.967 0.162 35.35 0.969 0.160
DTU 1] | Scan 105 3550 0.982 0.106 3554 0.983 0.105
scan 83 38.04 0.991 0.062 38.81 0.991 0.062

Table S4. Results averaged across test scenes. In solid scenes, our method outperforms PermutoSDF [44] (see Figure S8) but lags behind
other baselines. We explain this behavior in Section S4. Methods marked with a x show results taken from original papers. PermutoSDF
trained until densities are fully peaked (¢,). Metrics not provided by a baseline are denoted with “—".

NeRF-Synthetic [34]

|
‘ Training ‘ Test
|

Method PSNR1 SSIM?T LPIPS | ‘ PSNR1 SSIM?T LPIPS |
3DGS [24] 36.76 0.991 0.030 33.23 0.981 0.037
Instant-NGP [35] * — — — 33.18 — —
PermutoSDF [44] 29.31 0.975 0.057 28.05 0.966 0.065
AdaptiveShells [56] * — — — 31.84 0.957 0.056
QuadFields [47] * — — — 31.00 0.952 0.069
MobileNeRF [7] * — — — 30.90 0.947 0.060
3-Mesh 32.40 0.983 0.060 28.50 0.958 0.083
5-Mesh 33.23 0.986 0.055 28.77 0.959 0.081
7-Mesh 33.31 0.986 0.056 28.88 0.960 0.081
9-Mesh 33.19 0.986 0.057 28.79 0.960 0.082

a) PermutoSDF b) 7-Mesh (ours) ¢) PermutoSDF d) 7-Mesh (ours)

Figure S8. Qualitative comparison of our method with PermutoSDF [44]. Renderings (a) and (b) are from a training view. Renderings (c)
and (d) are from a test view. Scene from NeRF-Synthetic [34].

	Additional Visualizations
	Transparency Attenuation

