
Volumetric Surfaces: Representing Fuzzy Geometries with Layered Meshes

Supplementary Material

In this supplementary material, we provide additional ar-
chitectural and technical details (Section S1), further vi-
sualizations (Section S2), comprehensive per-scene results
(Section S3), and an in-depth analysis of performance on
fully solid geometries (Section S4).

S1. Additional Technical Information

β scheduling details: During training, the β parameter
is controlled by the scheduling of v as β = e10v. During
the main surface training phase, v linearly transitions from
v1 = 0.3 to v2 = 0.7. During the training of k-SDF, it further
progresses from v2 = 0.7 to v3 = 1.0. At β2, the logistic
distribution standard deviation is approximately 0.001. We
use this value to initialize offsets as constants (∆o). By the
end of implicit surface training (β3), it decreases to 0.00008,
resulting in fully peaked densities.

k-SDF Architecture: We encode 3D points using the train-
able positional encoding from Rosu and Behnke [44], fol-
lowed by a small MLP with three layers of 32 features each.
Hidden layers employ GELU activations, while the final layer
uses a linear activation to output the signed distance d (our
main SDF) and a geometric feature vector z. We predict
relative offsets using tiny MLP heads (a single layer with 32
units) with independent parameters, taking only z as input.
This ensures that model complexity scales with the number
of surfaces. To enforce the sign of the predicted offset, we
apply a softplus activation multiplied by the desired sign.
Finally, we compute the final ordered offsets by performing a
cumulative sum over the predicted relative offsets, separately
for negative and positive values.

Volumetric Appearance Architectures: We model RGB
and transparency as two networks with identical architec-
tures, differing only in their output dimensions (3 for RGB
and 1 for transparency). Both models encode 3D points us-
ing the trainable positional encoding from Rosu and Behnke
[44], followed by an MLP with three layers of 128, 128, and
64 features, respectively. Its input consists of the encoded
position, a spherical harmonics encoding (with degree 3)
of the view direction v, the normal vector of the rendered
SDF n and the geometric feature vector z predicted by k-
SDF. Normals are computed as the normalized gradients of
the SDFs; gradients are computed with finite differences,
ϵ = 10−4. Hidden layers use GELU activations, while the
final layer applies a Sigmoid activation to produce outputs
in the range [0, 1].

Neural Textures Architecture: During the mesh texturing

phase, we use separate neural texture models for RGB and
transparency per mesh. We encode 2D UV coordinates using
the trainable positional encoding from Müller et al. [35],
followed by a small MLP with two layers of 64 features each.
Hidden layers use ReLU activations, while the final layer
applies a linear activation to output per-channel spherical
harmonics (SH) coefficients of degree 3, which are then
decoded with view direction v.

Points sampling: During volumetric rendering the number
of uniformly sampled points per ray in the foreground area
of the scene is 64. On top of these, 32 points are added with
importance sampling. Additionally, if a scene is unbounded
(e.g. DTU), we sample 32 additional points in contracted
space [3]. Rays batch size is defined w.r.t. a target number of
sample points which is up to a maximum of 512× 64× 32
points.

Data handling: We use MVDatasets [11] to load datasets,
manage training loop pixel iterators, and perform ray casting.

S2. Additional Visualizations
We provide additional qualitative comparisons on our eval-
uation scenes of the DTU [21] dataset. Additionally, we
provide visualizations of per-surface rendering before alpha
blending (Figure S1 and Figure S3) to illustrate how each
layer, based on its position and opacity, contributes with its
view-dependent appearance model to the final image. Fi-
nally, we visualize results from Table 2. Figure S5 presents
a qualitative comparison between a render of our 7-Mesh
model, 3DGS [24], and 3DGS-75K. Figure S6 compares our
5-Mesh model to MobileNeRF [7].

S2.1. Transparency Attenuation
We introduced transparency attenuation in Section 4.2 to re-
duce visual artifacts at object boundaries. Figure S2, cropped
from our ablation experiments (Section 5.1), highlights its
significance in our method.

S3. Per-scene Results
Table S1, Table S2 and Table S3 present the per-scene values
that are averaged in Table 3.

S4. Fully Solid Scenes
Although not our targeted use case, we tested our method
on the fully solid scenes of the NeRF-Synthetic dataset [34],
which lacks fuzzy objects. As noted in Section 5.2, our advan-
tages in these scenes are marginal. While we outperform Per-
mutoSDF [44], our quality remains behind other baselines.



a) Surface normals.

b) Surface UVs.

c) Surface opacity.

d) Blending weights (contributions).

e) Surface colors (RGB).

Figure S1. Visualization of render buffers from our 5-Mesh model. Layers order: left to right is inner to outer. Individual layer color and
alpha buffers are blended as described in Section 4.2. Results on the khady scene from Shelly [56].

a) without αw b) with αw

Figure S2. (a) Rendering error crop (averaged over color channels)
without and (b) with transparency-decay, resulting in a 2.13 dB
PSNR gain. Scene from the Shelly [56].

We model fuzzy surfaces by optimizing sample distribution
rather than reconstructing high-frequency geometric details,

as spatial sampling is key to accurately capturing these ef-
fects. By favoring smoother surfaces, our method tends to
reconstruct overly simplified geometry in under-observed ar-
eas (Figure S7). Fully solid scenes can be optimally modeled
as a single surface. However, SDF-based methods struggle in
handling thin structures, as optimization often fails to recon-
struct them reliably (e.g., BakedSDF [60], BOG [43]). Our
surface smoothing, combined with view-dependent trans-
parency, often leads to thin structures being reconstructed as
view-dependent effects (Figure S8). As a result, our model
tends to overfit training views, leading to a larger quality gap
between training and test views (Table S4).



a) Surface normals.

b) Surface UVs.

c) Surface opacity.

d) Blending weights (contributions).

e) Surface colors (RGB).

Figure S3. Visualization of render buffers from our 7-Mesh model. Layers order: left to right is inner to outer. Individual layer colors and
alpha buffers are blended as described in Section 4.2. Results our custom plushy scene.



PermutoSDF 7-Mesh (ours) PermutoSDF 7-Mesh (ours)

3DGS Ground truth 3DGS Ground truth

Figure S4. Qualitative comparison of our 7-Mesh model with PermutoSDF [44] and 3DGS [24]. Scenes from the DTU dataset [21].

Table S1. Per-scene results for baselines. Refer to Table 3 for averaged results. Metrics not provided are denoted with “—”. PermutoSDF
trained until densities are fully peaked (ϕβ3). The hairy monkey scene is from Sharma et al. [47].

PermutoSDF [44] 3DGS [24] MobileNeRF [7]

Dataset Scene PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Shelly [56]

fernvase 28.42 0.953 0.078 34.82 0.986 0.040 29.06 0.957 0.088
horse 34.68 0.993 0.040 41.45 0.997 0.038 33.31 0.988 0.065
khady 26.22 0.879 0.226 30.54 0.924 0.187 26.42 0.877 0.228
kitten 30.91 0.971 0.093 38.17 0.991 0.050 30.22 0.968 0.098
pug 29.48 0.953 0.168 35.96 0.983 0.089 28.57 0.927 0.197
woolly 29.39 0.949 0.167 31.71 0.969 0.130 28.20 0.919 0.221

Custom hairy monkey 33.67 0.977 0.194 37.67 0.990 0.142 30.25 0.949 0.200
plushy 32.94 0.945 0.192 37.02 0.975 0.153 31.53 0.934 0.190

DTU [21] scan 105 34.78 0.985 0.124 35.50 0.984 0.102 — — —
scan 83 37.84 0.991 0.072 40.61 0.994 0.070 — — —



a) 3DGS b) 7-Mesh (ours)

c) 3DGS-75K d) Ground truth

Figure S5. 3DGS [24] demonstrates superior performance in modeling thin structures but is significantly less effective in representing large,
textured areas. Our method renders faster than 3DGS-75K on mobile devices. Results on the khady scene from Shelly [56]. Quantitative
results are in Table 2.

Table S2. Our per-scene results. The hairy monkey scene is from Sharma et al. [47]. Refer to Table 3 for averaged results.

3-Mesh 5-Mesh

Dataset Scene PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Shelly [56]

fernvase 32.41 0.985 0.066 33.63 0.988 0.064
horse 38.34 0.998 0.038 39.78 0.998 0.034
khady 29.78 0.938 0.193 29.88 0.941 0.194
kitten 35.84 0.991 0.078 36.85 0.992 0.076
pug 33.72 0.983 0.138 34.25 0.985 0.132
woolly 30.26 0.973 0.175 31.12 0.978 0.162

Custom hairy monkey 35.59 0.984 0.178 35.90 0.985 0.179
plushy 34.41 0.957 0.164 34.99 0.965 0.164

DTU [21] scan 105 34.77 0.980 0.120 35.40 0.982 0.106
scan 83 38.05 0.990 0.064 38.34 0.990 0.063



a) 5-Mesh (ours) b) MobileNeRF c) Ground truth

Figure S6. Our method surpasses MobileNeRF [7] in modeling volumetric hair while also achieving superior performance on flat surfaces.
Results on hairy monkey from QuadFields [47], our custom plushy scene and khady from Shelly [56]. Quantitative results are in Table 2.

Figure S7. Visualization of surface normals from our 7-Mesh model. Scene from NeRF-Synthetic [34].



Table S3. Our per-scene results. The hairy monkey scene is from Sharma et al. [47]. Refer to Table 3 for averaged results.

7-Mesh 9-Mesh

Dataset Scene PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Shelly [56]

fernvase 34.55 0.990 0.062 34.64 0.991 0.062
horse 40.05 0.998 0.033 39.32 0.998 0.034
khady 29.97 0.942 0.194 29.96 0.943 0.195
kitten 37.11 0.993 0.074 37.05 0.993 0.074
pug 34.25 0.985 0.132 34.24 0.985 0.133
woolly 31.04 0.978 0.158 31.05 0.978 0.160

Custom hairy monkey 36.09 0.987 0.177 36.14 0.987 0.175
plushy 35.18 0.967 0.162 35.35 0.969 0.160

DTU [21] scan 105 35.50 0.982 0.106 35.54 0.983 0.105
scan 83 38.04 0.991 0.062 38.81 0.991 0.062

Table S4. Results averaged across test scenes. In solid scenes, our method outperforms PermutoSDF [44] (see Figure S8) but lags behind
other baselines. We explain this behavior in Section S4. Methods marked with a ⋆ show results taken from original papers. PermutoSDF
trained until densities are fully peaked (ϕβ3). Metrics not provided by a baseline are denoted with “—”.

NeRF-Synthetic [34]

Training Test

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
3DGS [24] 36.76 0.991 0.030 33.23 0.981 0.037
Instant-NGP [35] ⋆ — — — 33.18 — —
PermutoSDF [44] 29.31 0.975 0.057 28.05 0.966 0.065
AdaptiveShells [56] ⋆ — — — 31.84 0.957 0.056
QuadFields [47] ⋆ — — — 31.00 0.952 0.069
MobileNeRF [7] ⋆ — — — 30.90 0.947 0.060

3-Mesh 32.40 0.983 0.060 28.50 0.958 0.083
5-Mesh 33.23 0.986 0.055 28.77 0.959 0.081
7-Mesh 33.31 0.986 0.056 28.88 0.960 0.081
9-Mesh 33.19 0.986 0.057 28.79 0.960 0.082

a) PermutoSDF b) 7-Mesh (ours) c) PermutoSDF d) 7-Mesh (ours)

Figure S8. Qualitative comparison of our method with PermutoSDF [44]. Renderings (a) and (b) are from a training view. Renderings (c)
and (d) are from a test view. Scene from NeRF-Synthetic [34].


	Additional Visualizations
	Transparency Attenuation


