
LATTE-MV: Learning to Anticipate Table Tennis Hits from Monocular Videos

Supplementary Material

Joint Min angle (in �) Max angle (in �)
A1 -170 170
A2 -120 120
A3 -170 170
A4 -120 120
A5 -170 170
A6 -120 120
A7 -175 175

Table 4. Kuka IIWA R820 joint angle ranges

A. Design of the controller to track any target
pose of the end-effector

We use reinforcement learning to train a policy that can
achieve a target pose within a given distribution in minimum
time. The robot consists of manipulator with 7 joints and
movement of the base in XY plane resulting into a 9DoF
systems as it has 9 control variables to move the system.
The racket is attached at the end-effector as shown in Fig-
ure 8. Reason for choice of a distribution for the target dur-
ing training is to encourage taking solutions of joint angles
and gantry position such that it can easily move to any pose
within the distribution and also change within the same dis-
tribution very quickly. The exact joint angle range of the
Kuka iiwa R820 are given in Table 4. We now describe the
RL algorithm in detail

A.1. Reward design
We reward the RL agent for moving towards the target pose.
Given a target goal T . The distance cost from the goal, C is
defined as follows:-

C = (eeposition�Tposition)
2+worientation cosh ((eequatT

�1
quat).w)

(17)
where worientation is the weight factor for the orientation

error in radians and is a hyperparameter set to 0.4 for the
experiments in this paper, Tposition is the goal position and
Tquat is the goal orientation in quaternion, eeposition and eequat
are the racket position and quaternion that is attached at the
end-effector. The reward, Rt at each time step is given as
follows:-

Rt = �(Ct � Ct�1) + wac|at|2 for t > 0

R0 = |a0|2
(18)

where at is the action command at time step t defined as
the change in joint angle and gantry position wrt the current

Figure 9. 100 poses sampled from Tdis

configuration. At every time step t, the target pose Tt is
changed if the robot is able to match the pose of the racket
on it’s end-effector with some tolerance tolt. The tolerance
tolt = tolfinal + (tolinit � tolfinal) exp�t/thalf is changed in a
curriculum from tolinit to tolfinal. Mathematically, change in
target pose Tt is defined as follows:-

Tt =

(
Tt�1 if Ct tolt,
Tnew ⇠ Tdis otherwise

for t > 0

T0 ⇠ Tdis

(19)

A.2. Training target pose distribution
The target pose distribution Tdis is defined as follows:-

Tdis ={pos ⇠ U(posmin, posmax)

euler = eulerfacing + e ⇠ U(�eulerrange, eulerrange)}
(20)

where eulerfacing is the orientation of racket face that ex-
tends to the target point in Figure 7 with handle facing in -Z
direction; posmin, posmax, eulerrange are chosen accordingly.
This enables learning to achieve poses only within the dis-
tribution of where players usually hold their racket to return
the ball facing the table. 100 randomly chosen poses in this
distribution are given in Figure 9

A.3. Policy training
We use Proximal Policy Optimization (PPO) RL algorithm
to learn the optimal policy to maximize the reward in the
environment described above. The episode sixe is chosen
to be 1000 time steps with a time step dt = 0.01s. The
training curve for rewards and the evaluation performance
is given in Figure 10. For evaluation performance, we fix
tol = tolfinal and choose the policy with best performance
within 200M environment steps

(a) Train (b) Eval

Figure 10. Rewards

B. Contact modeling

It is important to specify how the ball will bounce when col-
lided with the table and the racket so as to recreate the ball
exchanges collected from videos as described in Section 3

B.1. Racket to ball contact

For the racket to ball contact we assume lossless bounce
i.e. given the racket normal nracket and the ball veloc-
ity before collision vbefore. The velocity after collision,
vafter = vbefore + 2(vbefore.nracket)nracket. This conserves the
speed (|vbefore| = |vafter|) and as the racket is assumed to be
static, it does not impart any extra speed to the ball.

B.2. Ball to table contact

For the ball to table contact, we aim to exactly recreate the
trajectory parabola obtained in Section 3. For this, we fit
the ball velocities for each segment divided by when ball
contacts the table or the opponent’s racket. Whenever ball
makes a collision with the table or the opponent’s racket,
the new velocity is set to the values fit for the new segment
as fit in Section 3. This very closely enables recreating the
trajectories in Section 3

C. Setting target pose G

The target pose G is calculated as the pose to reflect the ball
based on Section B.1 such that it hits the table as close as
possible to the target point btarget. Mathematically, given the
table height ztable, velocity of the ball at the hitting point
vbefore, the hitting point on the racket bhit, and the function
fnorm that extracts the racket hitting plane normal from pose,
this can be formulated as:-

G = argmin
G

|btarget � p|2

where px = bhit,x + vreflected,xtc

py = bhit,y + vreflected,ytc

vreflected = vbefore + (vbefore.fnorm(G))fnorm(G)

tc =
�
q
v
2
reflected,z � 2g(bhit,z � ztable)� vbefore,z

g

(21)

where g = �9.81m/s
2 is the acceleration due to gravity

constant

D. Additional results
D.1. Varying central pose C

The results presented in Table 3 are with the central posi-
tion, C at the center. However, we also set pose C not to be
in the center of the table but biased towards one side. We
set C as the mean of all the positions in the training dataset
from where the player hits the ball. This is to show that
the transformer does not just learn the mean of all returns
made by the opponent but rather a correlation with the cur-
rent pose, history of poses of the opponent. The updated
results are given in Table 5. The return rates improve with
the updated starting pose C for all the 3 cases, however the
trend remains the same, i.e. the return rates with using the
ground truth is the highest, followed by using our prediction
for pre-positioning and the return rate if not pre-positioning
is the lowest. This shows that the trained transformer indeed
learns a correlation of the human poses with the anticipated
return trajectory of the ball.

Pre-Pos.
Strategy

Return
Rate

Return
Accuracy

Pose
Accuracy

Baseline 52.9% 0.506 m 0.23 m / 12.68�

Anticipatory 62.5% 0.469 m 0.17 m / 9.43�
Oracle 66.2% 0.489 m 0.14 m / 5.93�

Table 5. Return rates for the robot under different pre-positioning
strategies with C as the mean position of all the hit points in the
training dataset and orientation facing the table. Return accuracy
is the mean deviation of the return bounce point from the target
point on the opponent’s side of the table. Pose accuracy is the
mean difference in pose (position error/orientation error) of the
racket achieved vs target pose at the time when the ball hits or
passes the racket.

D.2. Varying �

Next, we study the effect on results by changing the hyper-
parameter � which dictates how much to trust the prediction

made by the anticipatory algorithm. � = 0 means trusting
the prediction completely, while � = 1 means the antici-
patory algorithm is completely trusted in setting the target
pose. Table 6 shows results with different values of �. As
can be seen, we get the best return rate at � = 0.1

Pre-Pos.
Strategy � = 0 � = 0.1 � = 0.5

Baseline 49.9% 49.9% 49.9%
Anticipatory 55.6% 59.0 % 54.4%
Oracle 64.5% 64.5% 64.5%

Table 6. Return rates for the robot under different values of � and
using our anticipatory pre-positioning strategy

D.3. Varying Th

Next, we study the effect on results by changing the hyper-
parameter Th, the length of history that dictates the time
to anticipate before the opponent hits the ball. There is a
trade-off between accuracy and the available time for the
anticipatory algorithm to pre-position. With larger Td, the
anticipatory algorithm will have more response time, but the
anticipation will be more inaccurate, as it will be hard to tell
how the opponent will hit more ahead of time. Vice-versa
for shorter Th. Hence, the value of Th is chosen accord-
ingly. Table 7 shows results with different values of Th. As
can be seen, we get the best return rate at Th = 0.2s.

Pre-Pos.
Strategy Th = 0.1s Th = 0.2s Th = 0.4s

Baseline 49.9% 49.9% 49.9%
Anticipatory 57.3% 59.0 % 58.4%
Oracle 62.1% 64.5% 65.2%

Table 7. Return rates for the robot under different values of � and
using our anticipatory pre-positioning strategy

	Introduction
	Related Works
	Reconstructing Table Tennis Gameplay
	Naming Convention
	Video Clipping
	Entity Tracking
	Global Positioning
	Assumptions
	Camera Calibration
	Player Positioning
	Ball Trajectory Reconstruction

	Reconstruction Results
	Reconstruction Quality
	Dataset Variety and Bias

	Anticipatory Prediction
	Transformer-based Prediction Model
	Model Architecture

	Conformal Prediction
	Conformal Prediction Theory
	Implementing Conformal Prediction

	Experiments and Results
	Experimental Setup
	Evaluating the Confidence Regions
	Analysis of Extreme Hits

	Anticipatory Control Algorithm
	Robot Reachable Set Modeling
	Target Confidence Region Selection
	Target Pre-Positioning Selection

	Anticipatory Controller Performance
	Simulation Setup
	Results

	Conclusion
	Design of the controller to track any target pose of the end-effector
	Reward design
	Training target pose distribution
	Policy training

	Contact modeling
	Racket to ball contact
	Ball to table contact

	Setting target pose G
	Additional results
	Varying central pose C
	Varying
	Varying Th

