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1. Acronyms Descriptions

Table 1. Descriptions of Acronyms used in the Paper

Acronym Description
CAPTN Chebyshev Attention Depth Permutation Texture Network

LCP Learnable Chebyshev Polynomial
SLAR Spatial Latent Attribute Representation
LTA Latent Texture Attribute

SLTM Stochastic Local Texture Masking
TFA Texture Frequency Attention
D2P Dual Depth Permutation
OL Orderless Latent Texture Attribute
SL Spatial Latent Texture Attribute
FC Fully Connected Layer

2. Hyperparameter Settings and Experimental Details
Tab. 2 presents the hyperparameters used for each dataset. A batch size of 32 (training and testing) and dropout of 0.9
(training) is used consistently across all datasets. The weight decay parameter is for the Adam optimizer with decoupled
weight decay [3].

Table 2. Training hyperparameters for each dataset

Dataset Epochs Weight Decay LCP Degree θ

DTD 300 0.5 2
FMD 100 0.01 1
KTH 30 0.5 1

GTOS 30 0.01 2
GTOS-M 30 0.01 3

Data Augmentation. All datasets undergo common augmentations including Random Horizontal and Vertical Flip, Random
Auto-contrast, and Color Jitter to enhance variability and robustness. Additionally, the DTD dataset employs Resize +
Random Resized Crop, while FMD applies Resize + Center Crop along with Random Equalize. KTH-TIPS2-b, GTOS,
and GTOS-M undergo Resize + Center Crop, Random Rotation of 5°, and Random Equalize, in addition to the common
transformations. For the computation of Latent Texture Attribute (LTA) loss, Stochastic Local Texture Masking (SLTM) is
applied using a mask size of 16× 16 pixels, resulting in extracted image patches of the same dimensions.
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2.1. Loss Function
The weights associated with each term in the Latent Texture Attribute (LTA) loss function—λ, µ, and ν—were set to 1,
assigning equal importance to all constituent loss components. Label smoothing [5] of 0.5 was applied to the cross-entropy
component of the LTA loss when training on the GTOS dataset. For all other datasets, label smoothing was set to 0.

2.2. Effect of Chebyshev Polynomial Degree and Crop Location
We investigate the impact of crop location in the Spatial Latent Attribute Representation (SLAR) along with different degrees
of the Learnable Chebyshev Polynomial (LCP), denoted as θ. A crop of size 5× 5 is used. By default (when no spatial offset
δ is applied), the crop spans from pixel location (2, 2) (bottom-left) to (6, 6) (top-right). To study the sensitivity to spatial
shifts, an offset of δ = −1 is introduced, shifting the crop one pixel diagonally (along both spatial dimensions).

Table 3. Impact of LCP degree θ and SLAR cropping offset δ on classification accuracy (%). ConvNeXt-T is used as the backbone.

θ δ DTD KTH GTOS GTOS-M

1 0 78.6 ±1.0 92.2±4.4 85.1±1.4 93.0
1 -1 78.6 ±0.9 92.1 ±4.4 85.1±1.5 93.0
2 0 78.9±0.8 91.8 ±4.5 85.1±1.7 93.5
2 -1 78.8 ±0.8 91.9±4.5 85.1±1.7 93.7
3 0 77.8 ±1.0 90.9 ±5.5 83.8 ±2.4 94.2
3 -1 77.9±1.0 91.0±5.5 83.9±2.4 94.2

Tab. 3 demonstrates the robustness of CAPTN to variations in cropping location from the concatenated representation of
enhanced latent texture attributes, XM−1

e , and the feature maps from the backbone’s final layer, XoM−1 , used to compute
the Latent Texture Attribute loss. This robustness suggests that CAPTN effectively learns and transfers spatial context from
the surrounding texture to the masked or cropped regions, regardless of the crop’s precise location. An offset of δ = 0 was
used for all datasets, except for GTOS-M where δ = −1. We also evaluated the optimal degree θ of the learnable Chebyshev
polynomial used to represent the orderless latent texture attributes with a ConvNeXt-T backbone. On the KTH dataset,
CAPTN achieved optimal performance with θ = 1. For GTOS, degrees 1 and 2 yielded comparable performance. However,
when using a ConvNeXt-N backbone, degree 2 (83.9±1.7) outperformed degree 1 (83.5±1.7). On DTD, CAPTN performed
best with θ = 2, and on GTOS-M, performance peaked at θ = 3.
The polynomial order θ is closely tied to the complexity of texture and material characteristics in each dataset. Orderless
aggregation inherently discards spatial information. To recover some of this, we model the representations as learnable
Chebyshev polynomials, introducing a controllable degree of non-linearity. In datasets like KTH—captured in controlled
environments with minimal intra-class variation—a low-degree polynomial (θ = 1) is sufficient. In contrast, DTD contains
perceptually similar categories (e.g., knitted vs. woven), demanding higher polynomial complexity. GTOS and GTOS-
M, comprising terrain images, show low inter-class variation, further benefiting from higher polynomial degrees to capture
nuanced material information.

2.3. Effect of Mask Size
Tab. 4 presents the classification performance of CAPTN when varying the mask size applied in the Stochastic Local Texture
Masking (SLTM) module. A mask size of 16 × 16 pixels consistently yields strong results across multiple texture and
material datasets. If the mask is too large, there is insufficient surrounding context for CAPTN to learn meaningful spatial
dependencies. Conversely, if the mask is too small, the patch extracted from the image may lack enough structural content to
produce a useful comparison with the SLAR features, making the Spatial Latent Texture Attribute Loss less informative.

Table 4. Impact of mask size on classification accuracy (%). ConvNeXt-N is used as the backbone.

Mask Size DTD KTH GTOS GTOS-M

8 77.8 ±1.0 90.6±4.8 83.9±1.7 91.1
16 77.9±1.0 90.6±4.6 83.9±1.7 91.6
32 77.9±1.0 90.5 ±4.7 83.9±1.7 90.7
64 77.7 ±0.9 90.3 ±4.4 83.9±1.7 89.8



3. Benefits of Learnable Chebyshev Polynomial

Figure 1. Density plots comparing embeddings with and without LCP.

We use the GTOS-M dataset with ConvNeXt-T as the backbone to generate the results shown in Fig. 1. This figure illustrates
the distribution of class-specific embeddings along the first t-SNE dimension, comparing representations learned with and
without the Learnable Chebyshev Polynomial (LCP). The Kernel Density Estimation (KDE) plots are derived from the first
dimension of the t-SNE embeddings and visualize how embeddings for each class are distributed. The density plot with LCP
exhibits more pronounced and numerous peaks compared to the plot without LCP. This indicates that LCP enhances intra-
class compactness by clustering embeddings of the same class more tightly, resulting in sharper distributions. Moreover, the
increased number of distinct peaks suggests that LCP captures finer-grained patterns or substructures within classes, making
the feature representations more discriminative. These improvements likely stem from LCP’s capacity to model higher-order
relationships while suppressing noise in the embedding space. Overall, LCP provides a more robust representation, enhancing
both compactness and separability. As such, this orderless representation using a 3rd-order LCP improves the mapping from
latent features to visual texture attributes.

(a) Asphalt (b) Brick

(c) Large limestone (d) Stone brick

Figure 2. Visualization from CAPTN with ConvNeXt-T backbone. Left: GTOS-M image with mask. Middle: Attention map from the
TFA module without LCP. Right: Attention map from the TFA module with LCP (3rd order) enabled.



Table 5. Number of trainable and non-trainable parameters (in millions) for CAPTN. GTOS-M Dataset.

Parameter Type ConvNeXt-N ConvNeXt-T ConvNeXt-B ConvNeXt-L

Trainable (CAPTN with 3rd order LCP) 1.72 2.45 4.31 9.60
Trainable (CAPTN with RBF) 2.88 3.98 6.69 14.22

Non-trainable 14.95 27.82 87.56 196.23

Figure 2 further demonstrates how the LCP influences the attention mechanism during backpropagation. Specifically, it
enhances the representational power of the upstream Texture Frequency Attention (TFA) module by modulating the gradient
flow. The resulting spatial attention maps are more uniformly distributed over relevant regions of the material surface. When
LCP is activated, the CAPTN module learns to downweight masked or irrelevant regions, as indicated by reduced attention
intensity in those areas. This highlights LCP’s effectiveness in guiding attention toward semantically meaningful regions,
thereby improving spatial focus and interpretability.

4. Computation Time to Generate Texture Embeddings
Understanding the computational efficiency of texture recognition methods is critical for selecting models suitable for real-
time or resource-constrained environments. By measuring the inference time required to generate texture embeddings, we
aim to evaluate the practicality of RADAM, GTN, and CAPTN across different backbone architectures. Since the RADAM
module and the classifier (e.g., Support Vector Machines, k-Nearest Neighbors) are separate, we removed the final classifi-
cation layers from GTN and CAPTN to ensure a fair comparison. The timing measurements focus solely on the time taken
to process an image and generate the final texture embeddings, before they are then fed into the classification layer or model.
All experiments were conducted on a single NVIDIA RTX A6000 GPU. To mitigate initialization overheads, the GPU was
warmed up, and a single RGB image of size 224×224 was used as input for each model. Before measuring inference time, a
warm-up phase was performed by running 10 forward passes through each model. This step ensures that initialization over-
heads, such as GPU memory allocation and CUDA kernel compilation, are excluded from the timing results. After warming
up, inference timing was measured by synchronizing the GPU to ensure that all pending operations were completed. Each
model performed 100 forward passes in a loop, with each iteration representing a single inference. The end time was recorded
after the loop, and GPU synchronization before and after the timing ensured accurate measurements, as CUDA operations are
asynchronous by default. Finally, the average inference time per forward pass was computed. Fig. 3 presents the average time
required for a forward pass to generate texture embeddings (measured in milliseconds) for RADAM, GTN, and CAPTN,
evaluated across different backbones. CAPTN has the lowest and stable average time for forward pass. Hence, in addition
to achieving state-of-the-art performance for most of the challenging benchmark texture and material datasets, CAPTN has
also shown to be more efficient.

5. Further Analysis of Quantitative Results
We provide a deeper analysis of the results presented in Table 1 of our paper. CAPTN demonstrates strong performance on
the DTD, KTH, GTOS, and GTOS-M datasets. However, RADAM [4] generally outperforms CAPTN on the FMD dataset.
This can be attributed to the nature of the FMD dataset, which contains a higher proportion of object-level and shape-related
information compared to the other datasets. RADAM leverages positional encoding that can effectively incorporate spatial
structural information, enabling it to better capture shape-centric features. In contrast, CAPTN is specifically designed to
generate and enhance latent texture attribute information, which is essential for texture and material representation. It is
not explicitly optimized for modeling shape-related information. Furthermore, the Latent Texture Attribute Loss in CAPTN
is crafted to reinforce texture representation learning rather than emphasize shape characteristics. Despite this, CAPTN
generally surpasses GTN [2] on the FMD dataset. This improvement can be partially attributed to the Stochastic Local
Texture Masking (SLTM) mechanism, which allows CAPTN to balance global and contextual features with fine-grained
local details. Additionally, unlike GTN, CAPTN benefits more from scaling up the backbone architecture. When using a
larger backbone such as ConvNeXt-L, CAPTN achieves performance on par with RADAM.

6. Reproducibility
We have re-run some experiments to ensure their reproducibility by other researchers in the future. Some differences in
decimal values were observed, as shown in Tab. 6.



Figure 3. Average Time (ms) for forward pass for different Models and backbones

Table 6. GTOS-M Classification Accuracy (%) for different models and backbones.

Backbone RADAM GTN CAPTN (ours)

ConvNeXt-N 81.8 90.1 91.6
ConvNeXt-T 85.3 91.9 94.2
ConvNeXt-B 82.2 94.8 94.0
ConvNeXt-L 85.8 93.9 94.9

Table 7. Comparison of rescaled [−1, 1] vs. unbounded (−∞,∞) domains for LCP.

Domain DTD GTOS

[−1, 1] 77.5 ±1.0 83.8 ±1.8

(−∞,∞) 77.9 ±1.0 83.9 ±1.7

7. Impact of Rescaling on LCP Transformation
Motivated by [1], we explored the operational domain for LCP. Rescaling inputs to the Chebyshev orthogonal domain [−1, 1]
may suppress texture-sensitive features that are critical for learning discriminative representations. Instead, by skipping this
rescaling step and directly applying the LCP transformation to raw LTAs, the model preserves essential information about ac-
tivation magnitudes and inter-channel dependencies. This allows the network to exploit a broader and more expressive range
of polynomial outputs. The benefit is particularly pronounced with higher-degree Chebyshev terms, which exhibit greater
variation when evaluated on unbounded input domains. As shown in Table 7, this approach yields improved performance for
texture and material recognition.
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