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A. More Analysis About α
In this section, we further analyze the rank-boosting effect
of α on the KV buffer and conduct additional ablation ex-
periments on α to validate the rationale behind our design.

An analysis of the rank-boosting effect. Assume in
κ(KT

j )Vj , j ∈ [0, N ] that the two components κ(KT
1 )V1
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2 )V2 are linearly correlated. That means:
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In general linear attention mechanisms, a portion of the KV
buffer formed by the sum of the two can be expressed as:
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After introducing α as a modulation coefficient for each
term, their sum becomes:
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(3)
Since in our setup the value of α1 and α2 are calculated
based on the attention scores between global query and
keys, it changes with the input samples and the training pro-
cess. This results in more varied coefficients, meaning that
the new matrix composed of these two linearly correlated
matrices has a broader range of possible values and greater
flexibility. This makes the KV buffer

∑N
j=1 αjκ(K

T
j )Vj

more likely to achieve a full-rank state.
As previously mentioned (Eq. 2 and Eq. 3), two linearly

correlated matrices can be summed to form a single matrix
with coefficients. Therefore, we consider here only the case
where all matrices are linearly independent. Consider the
equation:

N∑
j=1

cjκ(K
T
j )Vj = C (4)

Here, C ∈ Rd×d is a full-rank matrix. Since all κ(KT
j )Vj

are linearly independent, this equation has a unique solu-
tion or no solution. After decomposing cj into djαj , the
original equation becomes:

N∑
j=1

djαjκ(K
T
j )Vj = C (5)

Due to the presence of different scalars, the solutions can be
multiple, giving the matrix representation a broader scope.
This implies that there are more solutions that enable the
KV buffer to achieve a full-rank state.

More choices about α. We choose the attention scores
between the keys and the global query as the value for α,
and here we experiment with different selections. When α
is set as a learnable vector, its fixed shape of 1×N makes it
challenging to apply to higher resolution tasks such as ob-
ject detection. Therefore, we only evaluate its performance
on image classification tasks. We conduct experiments us-

Model Params(M) FLOPs(G) Acc(%)

DeiT-T 6 1.1 72.2

attn score 6 1.1 75.1
learnable 6 1.1 73.8(-1.3)

Table 1. More choice about α.

ing the DeiT-T [9] configuration, and the results are shown
in Tab. 1. While the learnable α still significantly enhances
the model’s performance, its effectiveness is not as impres-
sive as the α based on the attention score.

B. More Analysis About ϕ(.)
An analysis of the rank-boosting effect. Consider two
matrices A and B, A,B ∈ Rm×n, and represent these ma-
trices as a linear combination of rank-one matrices. That is:

A =

r∑
i=1

uiv
T
i , B =

s∑
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xjy
T
j (6)

where r = Rank(A), s = Rank(B), ui, xj ∈ Rm×1,
vi, yj ∈ Rn×1. Consider the Hardmard product:

(A⊙B)ij = Aij ⊙Bij (7)

we can rewrite it as:
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This expression shows that A⊙B can be viewed as a linear
combination of rs rank-one matrices. Therefore, the total
rank of A ⊙ B does not exceed the number of matrices,
which is:

Rank(A⊙B) ≤ rs = Rank(A)× Rank(B) (9)

The above expression effectively demonstrates that when
the ranks of the two matrices, r and s, are both small, the



Hadamard product can effectively raise the upper bound of
the matrix rank. Therefore, when augmenting the rank of
the output features matrix, the choice of ϕ(.) becomes less
important; what matters is the use of the Hadamard product.
This is consistent with the conclusions we obtained from the
ablation experiments in the main text. Regardless of what
ϕ(.) is, the presence of ϕ(.) will always enhance the rank of
the matrix.

C. Experimental Details
Image Classification. We adopt the training strategy pro-
posed in DeiT [9] with the only supervision is classification
loss. Specifically, all models are trained from scratch for
300 epochs with the input resolution of 224 × 224. Adam
is used with a cosine decay learning rate scheduler and 5
epochs of linear warm-up. The initial learning rate, weight
decay, and batch-size are set to 0.001, 0.05, and 1024, re-
spectively. We apply the same data augmentation and regu-
larization as DeiT [9] (RandAugment [4] (randm9-mstd0.5-
inc1) , Mixup [12] (prob = 0.8), CutMix [11] (prob = 1.0),
Random Erasing (prob = 0.25)).

Object Detection and Instance Segmentation. We ap-
ply RetinaNet [7], Mask-RCNN [5], and Cascaded Mask
R-CNN [1] as the frameworks based on the MMDetection
[2] to evaluate our models. The models are trained under
“1 ×” (12 training epochs) and “3 × +MS” (36 training
epochs with multi-scale training) settings. For the “1 ×”
setting, images are resized to the shorter side of 800 pixels
while the longer side is within 1333 pixels. For the “3 ×
+MS”, multi-scale training strategy is applied to randomly
resize the shorter side between 480 to 800 pixels. We use
the initial learning rate of 1e-4. For RetinaNet, we set the
weight decay to 1e-4. For Mask-RCNN and Cascaded Mask
R-CNN, we set it to 5e-2.

Semantic Segmentation. we implement UperNet [10]
and SemanticFPN [6] based on MMSegmentation [3] to val-
idate the models. For UperNet, we follow the previous set-
ting [8] and train the model for 160k iterations with the in-
put size of 512 × 512. For SemanticFPN, we also use the
input resolution of 512 × 512 but train the models for 80k
iterations.
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