
A. Preliminaries
Volume rendering. The radiance C of the pixel correspond-
ing to a given ray r(t) = o + td at the origin o ∈ R3

towards direction d ∈ S2 is calculated using the volume
rendering equation, which involves an integral along the ray
with boundaries tn and tf (tn and tf are parameters to define
the near and far clipping plane). This calculation requires
the knowledge of the volume density σ and directional color
c for each point within the volume.

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt (14)

The volume density σ is used to calculate the accumulated
transmittance T (t):

T (t) = exp

(
−
∫ tf

tn

σ(rs)ds

)
(15)

It is then used to compute a weighting function w(t) =
T (t)σ(r(t)) to weigh the sampled colors along the ray r(t)
to integrate into radiance C(r).
Surface rendering. The radiance Lo(x,ωo) reflected from
a surface point x in direction ωo = −d is an integral of
bidirectional reflectance distribution function (BRDF) and
illumination over half sphere Ω, centered at normal n of the
surface point x:

Lo(x,ωo) =

∫
Ω

Li(x,ωi)fr(x,ωi,ωo)(ωi · n)dωi (16)

where Li(x,ωi) is the illumination on x from the incoming
light direction ωi, and fr is BRDF, which is the proportion
of light reflected from direction ωi towards direction ωo at
the point x.

B. Implementation details
Our full model is composed of several MLP networks, each
one of them having a width of 256 hidden units unless other-
wise stated. In Stage 1, the SDF network Sθ is composed of
8 layers and includes a skip connection at the 4-th layer, simi-
lar to NeuS [42]. The input 3D coordinate x is encoded using
positional encoding with 6 frequency scales. The diffuse
color network Md utilizes a 4-layer MLP, while the input
surface normal n is positional-encoded using 4 scales. For
the specular color network Ms, a 4-layer MLP is employed,
and the reflection direction ωr is also positional-encoded
using 4 frequency scales. In the first stage, we exclusively
focus on decomposing the highlight (largely white) areas.
To reduce the complexity of considering color, we assume
that the specular radiance is in grayscale and only consider
changes in brightness. We can incorporate color information
in later stages to obtain a more detailed specular reflection
model. Like NeuS, the background is modeled by NeRF++.

In Stage 2, the light visibility network Mν has 4 layers. To
better encode the input 3D coordinate x, positional encoding
with 10 frequency scales is utilized. The input view direction
ωi is also positional-encoded using 4 scales. The indirect
light network Mind in stage 2 comprises 4 layers.

In stage 3, the encoder part of the BRDF network consists
of 4 layers, and the input 3D coordinate is positional-encoded
using 10 scales. The output latent vector z has 32 dimen-
sions, and we impose a sparsity constraint on the latent code
z, following IndiSG [56]. The decoder part of the BRDF
network is a 2-layer MLP with a width of 128, and the out-
put has 4 dimensions, including the diffuse albedo da ∈ R3

and roughness r ∈ R. Finally, the specular albedo network
Msa uses a 4-layer MLP, where the input 3D coordinate x is
positional-encoded using 10 scales, and the input reflection
direction ωr is positional-encoded using 4 scales.

The learning rate for all three stages begins with a linear
warm-up from 0 to 5× 10−4 during the first 5K iterations.
It is controlled by the cosine decay schedule until it reaches
the minimum learning rate of 2.5×10−5, which is similar to
NeuS. The weights λsur for the surface color loss are set for
0.1, 0.6, 0.6, 0.6 and 0.01 for DTU, SK3D, Shiny, Glossy,
and the IndiSG dataset, respectively. For all datasets, the
Fresnel value f in the rendering equation is set to 0.02. We
train our model for 300K iterations in the first stage, which
takes 11 hours in total. For the second and third stages,
we train for 40K iterations, taking around 1 hour each. The
training was performed on a single NVIDIA RTX 4090 GPU.

C. Training strategies of stage 1
In our training process, we define three loss functions,
namely volume radiance loss Lvol, surface radiance loss
Lsur, and regularization loss Lreg. The volume radiance loss
Lvol is measured by calculating the L1 distance between the
ground truth colors Cgt and the volume radiances Cvol of a
subset of rays R, which is defined as follows.

Lvol =
1

|R|
∑
r∈R

∥Cvol
r − Cgt

r ∥1 (17)

The surface radiance loss Lsur is measured by calculating
the L1 distance between the ground truth colors Cgt and the
surface radiances Csur. During the training process, only a
few rays have intersection points with the surface. We only
care about the set of selected rays R′, which satisfies the
condition that each ray exists point whose SDF value is less
than zero and not the first sampled point. The loss is defined
as follows.

Lsur =
1

|R′|
∑
r∈R′

∥Csur
r − Cgt

r ∥1 (18)

Lreg is an Eikonal loss term on the sampled points. Eikonal
loss is a regularization loss applied to a set of sampling points



X , which is used to constrain the noise in signed distance
function (SDF) generation.

Lreg =
1

|X |
∑
x∈X

(∥∇Sθ(x)∥2 − 1)2 (19)

We use weights λsur and λreg to balance the impact of these
three losses. The overall training weights are as follows.

L = Lvol + λsurLsur + λregLreg (20)

D. Details of stage 2
At this stage, we focus on predicting the lighting visibility
and indirect illumination of a surface point x under different
incoming light direction ωi using the SDF in the first stage.
Therefore, we need first to calculate the position of the sur-
face point x. In stage one, we have calculated two sampling
points r(ti′−1), r(t

′
i) near the surface. As Geo-NeuS [11],

we weigh these two sampling points to obtain a surface point
x as follows.

x =
Sθ(r(ti′−1))r(t

′
i)− Sθ(r(t

′
i))r(ti′−1)

Sθ(r(ti′−1))− Sθ(r(t′i))
(21)

Learning lighting visibility. Visibility is an important fac-
tor in shadow computation. It calculates the visibility of the
current surface point x in the direction of the incoming light
ωi. Path tracing of the SDF is commonly used to obtain a
binary visibility (0 or 1) as used in IndiSG [56], but this kind
of visibility is not friendly to network learning. Inspired by
NeRFactor [55], we propose to use an integral representation
with the continuous weight function w(t) (from 0 to 1) for
the SDF to express light visibility. Specifically, we establish
a neural network Mν : (x,ωi) 7→ ν, that maps the surface
point x and incoming light direction ωi to visibility, and the
ground truth value of light visibility is obtained by integrat-
ing the weights wi of the SDF of sampling points along the
incoming light direction and can be expressed as follows.

νgt = 1−
n∑

i=1

wi (22)

The weights of the light visibility network are optimized
by minimizing the loss between the calculated ground truth
values and the predicted values of a set of sampled incoming
light directions Ωi ⊂ S2. This pre-integrated technique can
reduce the computational burden caused by the integration
for subsequent training.

Lvis =
1

|Ωi|
∑
ω∈Ωi

∥νω − νgt
ω∥1 (23)

Learning indirect illumination. Indirect illumination refers
to the light that is reflected or emitted from surfaces in a

scene and then illuminates other surfaces, rather than di-
rectly coming from a light source, which contributes to the
realism of rendered images. Following IndiSG [56], we
parameterize indirect illumination I(x,ωi) via Ki = 24
Spherical Gaussians (SGs) as follows.

I(x,ωi) =

Ki∑
k=1

Ik(ωi | ξik(x), λi
k(x),µ

i
k(x)) (24)

where ξik(x) ∈ S2, λi
k(x) ∈ R+, and µi

k(x) ∈ R3 are
the lobe axis, sharpness, and amplitude of the k-th Spher-
ical Gaussian, respectively. For this, we train a network
Mind : x 7→ {ξik, λi

k,µ
i
k}Ki

k=1 that maps the surface point x
to the parameters of indirect light SGs. Similar to learning
visibility, we randomly sample several directions ωi from the
surface point x to obtain (pseudo) ground truth Igt(x,ωi).
Some of these rays have intersections x′ with other surfaces,
thus, ωi is the direction pointing from x to x′. We query our
proposed color network Mc to get the (pseudo) ground truth
indirect radiance Igt(x,ωi) as follows.

Igt(x,ωi) = Mc(x
′,n′,ωi,vf ) (25)

where n′ is the normal on the point x′. We also use L1 loss
to train the network.

Lind =
1

|M |
∑
m∈M

∥I(x,ωm)− Igt
m(x,ωm)∥1 (26)

E. Details of stage 3

The combination of light visibility and illumination SG is
achieved by applying a ratio to the lobe amplitude of the
output SG, while preserving the center position of the SG.
We randomly sample Ks = 32 directions within the SG
lobe and compute a weighted average of the visibility with
different directions.

ν(x,ωi)⊗ Ek(ωi | ξek, λe
k,µ

e
k)

≈Ek(ωi | ξek, λe
k,

∑Ks

s=1 Ek(ωs)ν(x,ωs)∑Ks

s=1 Ek(ωs)
µe

k)
(27)

Here, we offer intuitive explanations for why the incorpo-
ration of specular albedo in the model results in a decrease in
lighting prediction. The increase in the model’s complexity
is the primary reason. Specular albedo introduces a more
detailed modeling of surface reflection characteristics, re-
quiring additional parameters and learning capacity. This
raises the difficulty of training the model, potentially result-
ing in overfitting or training instability, thereby affecting the
accurate prediction of lighting.



F. Additional results

F.1. Additional results for the main text

We conduct a more in-depth comparison of our method with
the already published work NeRO. For DTU datasets, our
findings demonstrate that NeRO performs less effectively
than our approach on real datasets DTU, especially in the reg-
ular scenes of DTU shown in Fig. 10. NeRO fails to address
the negative impact of partial highlights on the geometry.
For example, the highlighted region of the skull model is
reconstructed as overly flat, while the Buddha model loses
numerous details that should have been retained. Similar
issues are also observed in the two plush toy scenes. More-
over, the presence of shadows causes NeRO to mistakenly
reconstruct shadowed areas as real objects and fill them in
(bricks and skull models). Fig. 11 shows three other scenes
(helmet, teapot, and car) from the Shiny dataset. We have
demonstrated that our method performs better than other
methods on the Shiny dataset. NeRO exhibits defects in the
dents and highlights of the helmet, as well as in the wheels
of the car. Furthermore, we extend our comparison to in-
clude more scenes in the glossy dataset in Fig. 12 and Tab. 5,
where although NeRO performs better, our method is also
capable of mitigating the impact of highlights on geome-
try. Our method demonstrates comparable results to NeRO.
Moreover, compared to NeuS, the results show a significant
improvement. Note that the real datasets include bear, bunny,
coral, and vase. The rest of the others are synthetic. As
for material representation, we adopted the spherical Gaus-
sians to represent the Ward BRDF model [45], while NeRO
uses the spherical harmonics to represent the Disney BRDF
model [5]. Tab. 6 and Fig. 14 show that we outperform
NeRO in materials and rendering.

In order to prove the effectiveness of the combination
of volume rendering and decoupled surface rendering, in
Fig. 13, we additionally present the qualitative evaluation for
more objects. It is evident that surface rendering is essential
for decomposing diffuse and specular components, ensur-
ing smooth reconstruction of glossy surfaces with complex
reflections.

Fig. 15 illustrates the qualitative results of material recon-
struction on the other scenes of the IndiSG dataset, highlight-
ing the effectiveness of our method. For completeness, we
visualize the decomposition of diffuse and specular in the
first stage in Fig. 16. In the first stage, the decomposition of
diffuse and specular is not a true BRDF model. This is be-
cause the MLP in the first stage is used solely for predicting
the components of diffuse and specular reflection, rather than
predicting material properties such as albedo and roughness.
The decision to directly predict colors instead of material
properties in the first stage serves two purposes: reducing
model complexity by focusing on the direct prediction of
specular reflection color, and optimizing geometry for bet-

ter reconstruction. By decomposing highlights through the
network in the first stage, surfaces with specular reflections
can be reconstructed more effectively, demonstrated by the
presence of flower pot ablation, and without encountering
the concavity issues observed in other methods.

In Fig. 17, from the DTU data, we can observe that our
method can separate the specular reflection component from
the diffuse reflection component, as seen in the highlights
on the apple, can, and golden rabbit. Even when faced with
a higher intensity of specular reflection, as demonstrated
in the example showcased in SK3D, our method excels at
preserving the original color in the diffuse part and accurately
separating highlights into the specular part.

In Fig. 18, we show the diffuse albedo and rendering
results of NVDiffrec, IndiSG, and our method. The render-
ing results indicate that our method can restore the original
appearance with specular highlights more accurately, such
as the reflections on the helmet and toaster compared to the
IndiSG and NVDiffrec methods. The material reconstruction
results show that our diffuse albedo contains less specular
reflection information compared to other methods, indicating
our method has a better ability to suppress decomposition
ambiguity caused by specular highlights.

Additionally, in Fig. 19, Fig. 20, and Fig. 21, we pre-
sented all components, the rendering, albedo, roughness,
diffuse color, specular color, light visibility, indirect light,
and environment light results for the IndiSG, DTU and SK3D
datasets, respectively. An interesting observation is that our
reconstructed environment maps have the capability to rep-
resent multiple direct light illuminants, as demonstrated in
the DTU dataset.

In Fig. 22, we additionally showcase the visualization re-
sults of relighting compared with the IndiSG method. IndiSG
and ours yield different predictions for material, resulting in
variations in the relighting results, but the relighting results
generated by our method exhibit richer details. Our method
demonstrates the practical utility employed in the relighting
scenarios.

In Fig. 23, we show that introducing specular albedo also
makes the sausage appear smoother and closer to its true
color roughness, represented by black. In terms of lighting,
when not using specular albedo, the lighting reconstruction
achieves the best result, indicating a clearer reconstruction of
ambient illumination. In summary, our ablation study high-
lights the importance of taking into account various factors
when reconstructing materials and illumination from images.
By evaluating the performance of different modules, we can
better understand their role in improving the reconstruction
quality.

In stage 3, if we do not consider indirect illumination
during the training process, the predicted results for render-
ing, material, and lighting will all experience a decline. The
qualitative results are shown in Fig. 24.



Table 5. Comparison with NeRO and NeuS on Glossy dataset.

Glossy bear bunny coral maneki vase angel bell cat horse luyu potion tbell teapot mean

NeuS 0.0074 0.0022 0.0016 0.0091 0.0101 0.0035 0.0146 0.0278 0.0053 0.0066 0.0393 0.0348 0.0546 0.0167
NeRO 0.0033 0.0012 0.0014 0.0024 0.0011 0.0034 0.0032 0.0044 0.0049 0.0054 0.0053 0.0035 0.0037 0.0033
Ours 0.0034 0.0017 0.0014 0.0027 0.0023 0.0034 0.0054 0.0059 0.0052 0.0060 0.0058 0.0035 0.0105 0.0044

Table 6. Comparison of material rendering on IndiSG dataset.

Baloons Hotdog
albedo rough render albedo rough render

NeRO 14.65 18.91 23.84 11.54 18.42 26.95
Ours 25.79 19.75 33.89 30.72 23.10 36.71

F.2. Additional experiments
To have a fair comparison with Geo-NeuS on the DTU
dataset, we incorporate the components of Geo-NeuS based
on the additional data (the point clouds from SfM and im-
age pairs) used in Geo-NeuS into our method. As shown
in Tab. 7, our approach can further enhance the surface re-
construction quality on datasets where highlights are less
pronounced.

Table 7. Quantitative results in terms of Chamfer distance on
DTU [17].

DTU 63 DTU 97 DTU 110 Mean

Geo-NeuS [11] 0.96 0.91 0.70 0.86
Factored-NeuS (ours) 0.99 1.15 0.89 1.01
Factored-NeuS (ours w/ Geo) 0.95 0.89 0.69 0.84

We conduct another experiment to compare our modeling
approach with Ref-NeRF and S3-NeRF [47]. The experimen-
tal quantitative and qualitative results are shown in Fig. 25.
Ref-NeRF utilizes volume rendering colors for diffuse and
specular components. If we directly combine SDF and the
architecture of Ref-NeRF, it is challenging to eliminate the
influence of highlights. Furthermore, if we applied the con-
struction method of S3-NeRF, which involves integrating
surface rendering colors into volume rendering, to modify
our model structure, we found that this modeling approach
cannot address the issue of geometric concavity caused by
highlights.

For chrome-like materials, We increase the Fresnel value
to 0.75 in the rendering formula of stage 3 to test the impact
of this operation. We show the results and their PSNR value
in Fig. 26, we observed that increasing the Fresnel value
indeed leads to the better reconstruction of objects with
chrome-like materials. For the Toaster model, we observed a
significant improvement in PSNR with an increased Fresnel
value. However, we also noticed that solely increasing the

Fresnel value can result in the degradation of texture details.
For instance, in the Coffee model, although the highlights
on the spoon are better reconstructed, the text on the cup
deteriorates. One of our future directions is to address this
issue more effectively.

G. Limitations
In certain scenarios, our method still faces difficulties. For
mesh reconstruction, despite improvements on the glossy
parts in the DTU 97 tin model, the overall Chamfer distance
does not significantly decrease due to the small proportion
of glossy parts. However, for scenes with large areas of
glossy parts, such as the flower pot model, our improvements
are more pronounced and surpass Geo-NeuS. As seen in
Appx Fig. 15, the reconstructed albedo of the chair still
lacks some detail. The nails on the chair and the textures on
the pillow are not accurately captured in the reconstructed
geometry. A future research direction is how to effectively
decompose materials for fine structures, such as nails on the
backrest of a chair.
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Figure 10. Qualitative results on regular scenes from DTU. with NeRO and NeuS on DTU dataset. Results show that NeRO fails to address
the negative impact of partial highlights on the geometry. Moreover, the presence of shadows causes NeRO to mistakenly reconstruct
shadowed areas as real objects and fill them in (bricks and skull models).
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Figure 11. Qualitative results on other scans (helmet, teapot, and car) from the Shiny dataset [39]. NeRO exhibits defects in the dents and
highlights of the helmet, as well as in the wheels of the car.
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Figure 12. Qualitative results on other scenes (bell, potion, horse, and tbell) compared with NeRO and NeuS on the Glossy dataset.
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Figure 13. Qualitative ablation evaluation for more objects.
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Figure 14. Qualitative comparison with NeRO in terms of material reconstruction and rendering quality.
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Figure 15. Qualitative results for other scenes (chair and jugs) on IndiSG dataset in terms of albedo reconstruction (left) and novel view
synthesis quality (right).
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Figure 16. Diffuse and specular decomposition results in the first stage.

Image Ours
Diffuse

Ours
Specular

Ours
Appearance

Image Ours
Diffuse

Ours
Specular

Ours
Appearance

Fu
nn

el
Po

t
Ju

g

D
T

U
11

0
D

T
U

97
D

T
U

63

Figure 17. Qualitative results for the SK3D (left) and DTU (right) datasets in the third stage. We can observe that our method can separate
the specular reflection component from the diffuse reflection component, as seen in the highlights on the apple, can, and golden rabbit. Even
when faced with a higher intensity of specular reflection in SK3D, our method can separate them very well.
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Figure 18. Qualitative results of materials reconstruction for the Shiny dataset, where albedo refers to the diffuse albedo. The results indicate
that our method can restore the original appearance with specular highlights more accurately, such as the reflections on the helmet and
toaster, and has a better ability to suppress decomposition ambiguity caused by specular highlights.
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Figure 19. Visualization of all components on IndiSG dataset.
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Figure 20. Visualization of all components on DTU dataset.
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Figure 21. Visualization of all components on SK3D dataset.
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Figure 22. Relighting comparison with IndiSG.
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Figure 23. Ablation study of material and illumination reconstruction. We show that introducing specular albedo also makes the sausage
appear smoother and closer to its true color roughness, represented by black. In terms of lighting, when not using specular albedo, the
lighting reconstruction achieves the best result, indicating a clearer reconstruction of ambient illumination.
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Figure 24. Ablation study of indirect light.
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Figure 25. Comparison with Ref-NeRF and S3-NeRF.
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Figure 26. Adjusting Fresnel value to model chrome-like appearance.
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