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Supplementary Material

This document provides more details as follows:
• Additional Quantitative Results (§A). We provide addi-

tional quantitative results on UrbanWalk dataset and GPT-
4 scoring for instruction alignment.

• Additional Qualitative Results (§B). Qualitative results as
well as an analysis of typical cases are provided.

• Implementation Details of MAPINSTRUCTOR(§C). We
introduce more implementation details of MAPIN-
STRUCTOR and experiment datasets. We also provide the
pseudo-code of our approach for the inference procedure.

• Discussion (§D). We further discuss the limitations, so-
cial impact, and future work of MAPINSTRUCTOR.

A. Additional Quantitative Results
We additionally conduct experiments on the outdoor
dataset — UrbanWalk [7] as in [5, 8, 17, 18]. Urban-
Walk [7] is an outdoor navigation dataset containing 26808
image-instruction pairs simulated by CARLA [3]. We fol-
low the experiment setting in [5, 8, 18]. Table S1 com-
pares MAPINSTRUCTOR with several competitive mod-
els on UrbanWalk [7]. Although the dataset focuses
on outdoor scenes with relatively sparse semantics, our
model still achieves the best performance across all met-
rics. Specifically, MAPINSTRUCTOR surpasses other mod-
els by 1.4%/2.1%/2.0%/2.2% in terms of SPICE/Bleu/Me-
teor/Rouge. This reveals the generalization capability of
MAPINSTRUCTOR in outdoor scenes.
To further evaluate the quality of the generated instructions,
we leverage GPT-4 [13] to score the degree of alignment be-
tween the generated instructions and the ground truth based
on key landmarks and actions, using a 0-5 scale. The evalu-
ation is conducted on REVERIE, and as shown in Table S2,
our method achieves better performance, demonstrating the
effectiveness of MAPINSTRUCTOR in generating highly
aligned and contextually accurate navigation instructions.

UrbanWalk testMethods
SPICE↑Bleu-4↑Meteor↑Rouge↑

BT-speaker [6][NeurIPS2018] 0.524 0.408 0.350 0.620
EDrop-speaker [15][NAACL2019] 0.531 0.435 0.358 0.634

ASSISTER [7][ECCV2022] 0.451 0.164 0.319 0.557
Kefa-speaker [18][Arxiv2023] 0.566 0.450 0.378 0.655

C-INSTRUCTOR† [8][ECCV2024] 0.645 0.534 0.461 0.781
BEVINSTRUCTOR† [5][ECCV2024] 0.679 0.575 0.451 0.786

MAPINSTRUCTOR†(Ours) 0.693 0.596 0.481 0.808

Table S1. Quantitative comparison results for NIG on Urban-
Walk [7] test. See §A for more details. †: LLM-based models.

Method LANA+ [65] C-INSTRUCTOR [31] BEVINSTRUCTOR [15] MAPINSTRUCTOR

GPT-score↑ 3.21±0.4 3.48±0.3 3.57±0.4 3.86±0.2

Table S2. Quantitative comparison results scored by GPT-4 for
NIG on REVERIE [14] val unseen. See §A for more details.

B. Additional Qualitative Results

Additional qualitative results are provided in Fig. S1, and
Fig. S2. Fig. S1 highlights the capability of fine-grained
object detection in the small, dense object environments,
e.g., mirror, clock, and side table. Fig. S2 showcases
the visual results for the long-range trajectory in RxR.
MAPINSTRUCTOR exhibits strong robustness in capturing
crucial landmarks and temporal relationships in the long-
range route, attributed to its map-based architecture design.

C. Implementation Details

Network Architecture. For scene representation encod-
ing (§3.2), we utilize ViT-B/16 [4], pretrained on ImageNet,
as the backbone to extract image features. Cross-View At-
tention is implemented using six deformable attention lay-
ers for 2D-to-3D sampling. In addition, semantic occu-
pancy annotations are employed for multi-scale scene pre-
diction [10, 16]. A multi-class prediction head is optimized
by AdamW [12] with a learning rate of 1× 10−4.

Datasets. We conduct experiments on the following three
datasets in the main paper.

• R2R [1] builds upon diverse photo-realistic house scenes.
There are three splits for experiments, i.e., train (61
scenes, 14, 039 instructions), val seen (61 scenes,
1, 021 instructions), and val unseen (11 scenes,
2, 349 instructions). There are three human-annotated
navigation instructions for each path and the average
length is approximately 29 words. No overlapping scenes
exist between train and unseen splits.

• REVERIE [14] extends Matterport3D [2] to incorpo-
rate object-level annotations. It comprises indoor scenes
with 4, 140 target objects and 21, 702 instructions with
an average length of 18 words. There are three splits for
our experiment, i.e., train (61 scenes, 10, 466 instruc-
tions), val seen (61 scenes, 1, 371 instructions), and
val unseen (10 scenes, 3, 753 instructions).

• RxR [9] is a multilingual dataset for Vision-Language
Navigation in Matterport3D [2]. It includes longer tra-
jectories and fine-grained visual groundings with three
splits, i.e., train (61 scenes, 11, 089 instructions), val
seen (61 scenes, 1, 232 instructions), val unseen (10
scenes, 1, 517 instructions).

We present the pseudo-code for the inference phase of
MAPINSTRUCTOR in Algorithm 1.



Landmark Prediction:
1. the stairs, the hallway, the doorway, the mirror
2. the stairs, the doorway, the mirror, 
3. the hallway, the stairs, the first picture

Instruction Generation: walk down the stairs and turn right. walk 
through the doorway and stop in front of the mirror.

R2R

Ground-Truth: Continue down the stairs. You'll see a big starburst tile 
on the floor, turn right and go into the first doorway on the right. There 
will be a big mirror in the room. You'll stop and wait just inside this room.

Landmark Prediction:
1. the hallway, the stairs, the first level
2. the stairs, the hallway, the mirror, the clock
3. the hallway, the stairs, the first level, the mirror, the clock

Instruction Generation: Go to the hallway by the stairs on the first 
level and clean the side table next to the mirror and clock.

REVERIE

Ground-Truth: Go to the hallway with the mirror big clock and star-
shaped ceiling light and dust off the side table

Goal object: side table

Clock

Mirror

Stairs

Side table

Clock

Mirror

Stairs

Side table

Figure S1. Visual comparison results between Ground-Truth and MAPINSTRUCTOR on R2R and REVERIE. See §B for more details.

Landmark Prediction:
1. cupboard, open door, open door, gym room, treadmill
2. cupboard, open door, open door, gym
3. table, open door, open door, gym, window, treadmill

RxR

Ground-Truth: Right now you are facing a cupboard, turn slight right and 
enter into an entrance, which is in front of you, now turn left and move 
forward towards an open door, which is in front of you, now turn left and 
move towards an open door, now turn slight right and exit the room, now 
you are in a gym room, now move a little bit forward towards the window, 
which is in front of you, stand facing the cupboard, which is beside rack, 
this will be your end point.

Table

Treadmill

Cupboard

Window

Instruction Generation: Now you are facing towards the cupboard, turn 
slightly right and move forward, now turn slightly left and move towards 
the open door, exit the room, now turn to your left and move towards the 
open door, now turn to your right and move towards the gym room, 
move towards the treadmill.

Figure S2. Visual comparison results between Ground-Truth and MAPINSTRUCTOR for NIG on RxR. See §B for more details.

D. Discussion

Limitations. Although MAPINSTRUCTOR achieves
promising performance, it remains limited by the open-
vocabulary alignment between semantics and 3D represen-
tation, which leads to inaccuracies in landmark prediction.
Additionally, while the 3D representation effectively cap-
tures the shapes of objects, it lacks annotations to distin-

guish between intra-class similar objects within the same
scene. A major bottleneck for 3D-aware NIG models is
the scarcity of fine-grained, diverse 3D training data, es-
pecially datasets that include detailed textual descriptions
paired with 3D environments. Furthermore, NIG is a safety-
critical robotic task, yet current LLM-based NIG models
are prone to hallucinations. While MAPINSTRUCTOR mit-



Algorithm 1 Pseudo-code for the inference model of our
approach in a PyTorch-like style

# F_2d: panorama perspective features
# F_3d: 3D voxel representation
# r: orientation angles
# p: perspective embedding
# a: action embedding
# v: scene representation
# v_m: map updated scene representation
# x: instruction
# s: landmark
# M: number of rounds for landmark prediction

def scene encoder(F_2d, r):
#= compute the perspective features (Eq.2,3) ==#
p, a = PERSPECTIVE(F_2d, r)
#======= compute 3D features (Eq.4,5,6) =======#
F_3d = 3DENCODER(F_2d)
#==== compute scene representation (Eq.7) =====#
v = SCENE(F_3d, p, a)
#= compute map-aggreated features (Eq.8,9,10) =#
v_m = GNN(v)
return v_m

def landmark prediction(v_m):
#====== predict landmarks (Eq.12) =======#
s = LLM(v_m)
return s

def instruction generation(v_m, s):
#=== instruction generation (Eq.1) ======#
x = LLM(v_m, s)
return x

def inference(F_2d, r):
v_m = scene encoder(F_2d, r)
#======== recurrent refinement ==========#
for _ in range(M):

s = landmark prediction (v_m)
s_lists.append(s)

#=== landmark semantic entropy (Eq.13) ===#
LE(s) = ENTROPY(s_lists)
#=========== landmark select =============#
s_ = SELECT(s_lists)
#======== instruction generation =========#
x = instruction generation(v_m, s_)

return x

LLM: LLM Decoder; PERSPECTIVE: Perspective Embedding Encoder;
3DENCODER: 3D Voxel Encoder; SCENE: Scene Representation Encoder;
GNN: Graph Network Encoder; ENTROPY: Landmark Semantic Entropy.

igates these hallucinations by leveraging landmark semantic
entropy, it cannot eliminate the risk of generating erroneous
or misleading instructions.
Social Impact. Our MAPINSTRUCTOR incorporates topo-
logical map representation into current LLM-based mod-
els via prompt features, achieving significant performance
gains. This approach enhances the interactive feedback
capabilities of real-world robotics, addressing the often-
overlooked map connectivity in previous NIG models. It is
particularly beneficial for navigation or search-and-rescue
robots, especially in extreme and complex environments.
Future Work. MAPINSTRUCTOR establishes a scene rep-
resentation by combining local 3D voxel representations
with global topological map construction. With the ad-
vancements in modern robotics [11], embodied agents are
increasingly equipped with fine-grained sensors across var-
ious modalities, such as LiDAR, IMU, and sonar. To further
enhance comprehensive scene understanding, we aim to in-
tegrate additional sensors into a unified perception mod-

ule, enabling richer multimodal fusion for more robust NIG.
Moreover, rigorous hallucination quantification is a crucial
step in real-world robotics. It directly impacts the reliability
and safety of the generated instructions for agents. In the
future, we will explore more effective strategies to detect,
mitigate, and quantify hallucinations, ensuring higher ro-
bustness in LLM-based NIG models.
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