
SpectroMotion: Dynamic 3D Reconstruction of Specular Scenes

Supplementary Material

A. Overview
Supplementary material goes here. This supplementary ma-
terial presents additional results to complement the main
manuscript. In Section B, we detail our coarse-to-fine train-
ing strategy, along with the network architectures of the
deformable Gaussian MLP and deformable reflection MLP.
Subsequently, Section C presents additional results, includ-
ing comprehensive comparisons, more visualizations, and
training and rendering efficiency. Finally, in Section D, we
discuss the limitation of our approach and provide visual
example of failure case.

B. Implementation Details
We use PyTorch as our framework and 3DGS [2] as our

codebase. Our coarse-to-fine training strategy is divided into
three sequential stages: static, dynamic, and specular stages.

Static stage. In the static stage, we train the vanilla 3D
Gaussian Splatting (3DGS) for 3000 iterations to stabilize
the static geometry.

Dynamic stage. After the static stage, we move on to the
dynamic stage. During this phase, we introduce a deformable
Gaussian MLP to model dynamic objects. First, we optimize
both the canonical Gaussians and the deformable Gaussian
MLP for 3,000 iterations until the scene reaches a relatively
stable state. Then, we introduce the normal loss Lnormal, en-
abling simultaneous optimization of the scene’s normal and
depth, and perform an additional 3,000 iterations to further
refine the geometry. The dynamic stage comprises a total of
6,000 training iterations.

Specular stage. After the dynamic stage concludes, we
transition to the specular stage, which involves changing the
color representation from complete spherical harmonics to
cfinal. To mitigate potential geometry disruptions due to the
initially incomplete cfinal, we fix the deformable Gaussian
MLP and all 3D Gaussian attributes except for zero-order
SH, specular tint, and roughness, while temporarily suspend-
ing densification. After 6000 iterations, once cfinal becomes
more complete, we resume optimization of all parameters
and reinstate the densification process. Then, after another
3000 iterations, we stop the densification process. Concur-
rently, during the first 2000 iterations of the specular stage,
we optimize only the canonical environment map to learn
time-invariant lighting. For the canonical environment map,
we use 6×128×128 learnable parameters. Subsequently, we
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Figure 1. Architecture of the deformable Gaussian MLP

𝜔𝑟
𝑡

2
5
6

2
5
6

2
5
6

2
5
6

2
5
6

2
5
6

2
5
6

2
5
6

2
5
6

Δഥ𝜔𝑟
𝑡

𝑡

Reflection direction

Time Positional encoding

Positional encoding

Figure 2. Architecture of the deformable reflection MLP

begin optimizing the deformable reflection MLP to capture
time-varying lighting effects until the training is complete.
The specular stage comprises a total of 31,000 training itera-
tions. For the Peel Banana scene in the HyperNeRF dataset,
we do not fix the deformable Gaussian MLP. We resume
optimization of all parameters and reinstate the densification
process after the first 4000 iterations of the specular stage.
Then, after another 2000 iterations, we stop the densification
process to prevent excessive growth in the number of 3D
Gaussians, which could lead to GPU out-of-memory issues.

For the entire experiment, we train for a total of 40,000
iterations and we use Adam optimizer.

B.1. Network Architecture of the Deformable Gaus-
sian MLP and Deformable reflection MLP

We follow Deformable 3DGS [8] and use deformable Gaus-
sian MLP to predict each coordinate of 3D Gaussians and
time to their corresponding deviations in position, rotation,
and scaling. As shown in Fig. 1, the MLP initially processes
the input through eight fully connected layers that employ
ReLU activations, featuring 256-dimensional hidden layers
and outputs a 256-dimensional feature vector. This vector
is then passed through three additional fully connected lay-
ers combined with ReLU activation to separately output the
offsets over time for position, rotation, and scaling. Notably,
similar to NeRF, the feature vector and the input are concate-
nated in the fourth layer. For the deformable reflection MLP,
we utilize the same network architecture, as shown in Fig. 2.



Table 1. Quantitative comparison on the NeRF-DS [6] dataset with our labeled dynamic specular masks. We report PSNR, SSIM, and
LPIPS (VGG) of previous methods on dynamic specular objects using the dynamic specular objects mask generated by Track Anything [7].
The best , the second best , and third best results are denoted by red, orange, yellow.

As Basin Bell Cup

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Deformable 3DGS [8] 24.14 0.7432 0.2957 17.45 0.5530 0.3138 19.42 0.5516 0.2940 20.10 0.5446 0.3312
4DGS [5] 22.70 0.6993 0.3517 16.61 0.4797 0.4084 14.64 0.2596 0.4467 18.90 0.4132 0.4032
GaussianShader [1] 19.27 0.5652 0.5232 15.71 0.4163 0.5941 12.10 0.1676 0.6764 14.90 0.3634 0.6146
GS-IR [3] 19.32 0.5857 0.4782 15.21 0.4009 0.5644 12.09 0.1757 0.6722 14.80 0.3445 0.6046
NeRF-DS [6] 23.67 0.7478 0.3635 17.98 0.5537 0.4211 14.73 0.2439 0.5931 19.95 0.5079 0.3494
HyperNeRF [4] 17.37 0.6934 0.3834 18.75 0.5671 0.4125 13.93 0.2292 0.6051 15.07 0.4860 0.4183
Ours 24.51 0.7534 0.2896 17.71 0.5675 0.3048 19.60 0.5680 0.2862 20.13 0.5384 0.3368

Plate Press Sieve Mean

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Deformable 3DGS [8] 16.12 0.5192 0.3544 19.64 0.6384 0.3268 20.74 0.5283 0.3109 19.66 0.5826 0.3181
4DGS [5] 13.93 0.4095 0.4229 20.17 0.5434 0.4339 19.70 0.4498 0.3879 18.09 0.4649 0.4078
GaussianShader [1] 9.87 0.2992 0.6812 16.84 0.4408 0.6093 16.19 0.3241 0.5862 14.98 0.3681 0.6121
GS-IR [3] 11.09 0.3254 0.6270 16.43 0.4083 0.5776 16.42 0.3339 0.5749 15.05 0.3678 0.5856
NeRF-DS [6] 14.80 0.4518 0.3987 19.77 0.5835 0.5035 20.28 0.5173 0.4067 18.74 0.5151 0.4337
HyperNeRF [4] 16.03 0.4629 0.3775 14.10 0.5365 0.5023 18.39 0.5296 0.3949 16.23 0.5007 0.4420
Ours 16.53 0.5369 0.3041 21.70 0.6630 0.3252 20.36 0.5089 0.3190 20.08 0.5909 0.3094
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Figure 3. Qualitative comparison on NeRF-DS [6] dataset with labeled dynamic specular masks.

C. Additional Results C.1. Dynamic specular object of NeRF-DS dataset.

Since each scene in the NeRF-DS dataset [6] contains not
only dynamic specular objects but also static background
objects, we use Track Anything [7] to obtain masks for the
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Figure 4. Qualitative comparison on the NeRF-DS [6] dataset.
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Figure 5. Visualized our rendered test images, normal maps, and depth maps.

dynamic specular objects. This allows us to evaluate only
the dynamic specular objects. As shown in Tab. 1 and Fig.
3, our method outperforms baselines when evaluating the
dynamic specular objects in these monocular sequences.

C.2. Per-Scene results on the NeRF-DS Dataset

In Fig. 4, we present qualitative results for each scene in the
NeRF-DS dataset [6]. The visualizations demonstrate that
our method achieves superior rendering quality compared to
other approaches. We also provide rendered test images and
their corresponding normal maps and depth maps for each
scene in the NeRF-DS dataset in Fig. 5.

C.3. Deformation magnitudes and color decompo-
sition

Unlike NeRF-DS [6], our approach does not require mask
supervision to clearly distinguish between static and dynamic
objects, as illustrated in Fig. 6. Additionally, Fig. 7 illustrates
our method’s decomposition results. As shown, our approach
consistently achieves a realistic separation of specular and
diffuse components across different scenes in the NeRF-DS
dataset [6].

C.4. Training and rendering efficiency
In Tab. 2, we present the training time, FPS, and number
of Gaussians from our experiments on each scene in the
NeRF-DS dataset [6]. The results show that for scenes with



(a) Ground truth dynamic masks (b) Our rendered deformation magnitudes

Figure 6. Visualized our deformation magnitudes. (a) The left side shows the ground truth of the dynamic object, while (b) on the right
side, we render the magnitude of the output of the position residual by our deformable Gaussian MLP. The brighter areas indicate greater
movement of the 3D Gaussians. The figure shows that even without mask supervision, our method can still effectively distinguish which
objects are dynamic.
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Figure 7. Visualized our specular and diffuse color. Specular regions are emphasized while non-specular areas are dimmed to highlight the
results of specular region color decomposition.

Table 2. Training and rendering efficiency on NeRF-DS [6]
dataset

Scene Training time (hr) FPS Number of Gaussians (k)

as 1.2 31 170
basin 1.3 25 218
bell 1.9 18 335
cup 1.7 30 177
plate 1.1 27 187
press 1.0 31 172
sieve 1.1 29 178

fewer than 178k Gaussians, our method achieves real-time
rendering greater than or equal to 30 FPS. The experiments
are conducted on an NVIDIA RTX 4090 GPU.

C.5. In-the-Wild / Non-Staged Scenes.

We ran our method on the Waymo dataset, which features
reflective vehicles and complex motion. As shown in Fig 8
below, our approach outperforms Deformable 3DGS, particu-
larly in handling specular surfaces. These results underscore
the robustness of our method in in-the-wild settings.

D. Limitation

In some dramatic scenes, relying solely on the deformable
Gaussian MLP and coarse-to-fine training strategy is insuffi-
cient, such as when an arm or body enters or exits the scene,
leading to many floaters occurring. We provide visual results
in Fig. 9.
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Figure 8. Comparison of our method and Deformable 3DGS on reflective cars.

Dramatic scenes

Figure 9. Failure cases of modeling dramatic scene changes. There are dramatic scenes where an arm or body enters or exits the scene,
leading to many floaters occurring.
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