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1. Overview
In this supplementary material, we provide additional de-
tails and more experimental results to further validate the
proposed UniCD framework. The structure of this material
is organized as follows.

Details of the IRBFD Dataset. In Section 2, we de-
scribe the construction of the IRBFD dataset, including the
synthetic process for generating nonuniformity bias fields in
IRBFD-syn and the characteristics of real-world scenes in
IRBFD-real. These datasets aim to comprehensively bench-
mark nonuniformity correction (NUC) and UAV detection
methods.

Further Validation Results of the UniCD Framework.
In Section 3, we detail the training process of UniCD, in-
cluding both separate and union training phases. We high-
light the design of loss functions to ensure effective cooper-
ation between the NUC and detection modules.

In Section 4, we present additional quantitative results
that demonstrate the superior performance of UniCD com-
pared to state-of-the-art methods. UniCD achieves high de-
tection accuracy and robustness across synthetic and real-
world datasets, even under challenging scenarios.

In Section 5, we provide more qualitative results to visu-
ally illustrate the advantages of UniCD. The visualizations
emphasize its ability to correct severe nonuniformity while
maintaining accurate target detection.

Further Ablation Studies. In Section 6, we conduct
ablation studies to evaluate the impact of key components,
such as the degree of polynomial used in the NUC module
and the inclusion of the TEBS and BR losses. These studies
confirm the adaptability and effectiveness of UniCD under
various configurations.

Details of Metric Computation. In Section 7, we calcu-
late the signal-to-clutter ratio gain (SCRG) to quantify the
improvement in target detectability achieved by UniCD.

*Corresponding author. †Equal contribution.

In Section 8, we compute the cosine similarity between
feature maps to analyze the feature alignment introduced
by different correction methods. This further supports the
superiority of UniCD in enhancing feature representation
for UAV detection.

This supplementary material highlights the robustness,
efficiency, and effectiveness of the UniCD framework
across a wide range of experimental scenarios, providing
strong support for the claims made in the main paper.

2. More Details about the Dataset IRBFD

2.1. Generation Process of the Synthetic Dataset
IRBFD-syn

Selection of Infrared Clear Images. To ensure the broad
applicability and diversity of the dataset, we select the
largest publicly available infrared UAV dataset [3] as the
foundation. From this dataset, we uniformly and randomly
sampled 30,000 images to serve as the infrared clear im-
ages. After sampling, we conduct a manual review to en-
sure that every image contains UAV targets. These images,
along with their tracking annotations, are converted into the
VOC dataset format for ease of use and compatibility with
existing tools.

Generation of Degraded Images with Nonuniformity
Bias Fields. We model nonuniformity bias field using the
following bivariate polynomial:

B(xi, yj) =

D∑
t=0

D−t∑
s=0

at,sx
t
iy

s
j , (1)

where coefficients at,s are randomly setted to simulate vary-
ing bias levels. D denotes the degree of the polynomial. By
varying the degree D, we can obtain bias fields with differ-
ent basis surfaces. In our work, we set the degree D to 3.
Then, by adding the bias field to a clear infrared image, we
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Figure 1. Visualization of degraded images with varying levels of nonuniformity degradation controlled by k.

(a)  Typical Backgrounds in IRBFD-syn
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(b)  Typical Backgrounds in IRBFD-real

Figure 2. Typical backgrounds in UAV surveillance scenarios from the IRBFD dataset.

can obtain the degraded image with bias fields:

Y = C + k ∗B, (2)

where Y , C, and B represent the degraded image, the clean
image, and the bias field, respectively. k is employed to
control the severity of nonuniformity. The effects of dif-
ferent levels of degradation are shown in Fig. 1. When the
degree of degradation is very low (k is much smaller than
10), existing target detection methods can detection UAV
targets without requiring correction. However, as the degra-
dation becomes more severe (k is much greater than 10),
most existing correction methods fail and existing detection
methods also struggle to detect the UAV targets. Therefore,
we set k=10 in the dataset to evaluate the effectiveness of
UniCD under challenging nonuniformity conditions.

2.2. Statistics and Analysis of the IRBFD Dataset
Diversity of Backgrounds. In Fig. 2, the first row
presents typical background images from the synthetic

Figure 3. Statistics of target scales in the IRBFD dataset.

dataset IRBFD-syn. For clarity of visualization, we dis-
play the infrared clear images at the top of Fig. 2. These
scenes encompass two different lighting conditions (day
and night), two seasons (autumn and winter), and a vari-



ety of backgrounds, including buildings (30%), mountains
(20%), forests (5%), urban areas (30%), clouds (10%), and
water surfaces (3%) [3].

In the real dataset IRBFD-real, we collect UAV target
data under various real-world bias field degradation sce-
narios. The dataset encompasses a diverse range of back-
grounds, including dense clouds, trees, power lines, build-
ings, and farmlands, as shown at the bottom of Fig. 2. These
real-world scenes were carefully selected to reflect prac-
tical environmental complexities, providing a comprehen-
sive testbed for evaluating the robustness of the proposed
method against real nonuniformity effects.

Scale Variation of Infrared UAV Targets. As shown
in Fig. 3, in the IRBFD-syn dataset, tiny-scale UAV tar-
gets (Tiny, [2, 10)) account for approximately 37.8% (9,852
targets), mini-scale UAV targets (Mini, [10, 20)) account
for approximately 63.1% (16,406 targets), small-scale UAV
targets (Small, [20, 30)) account for approximately 11.9%
(3,110 targets), and medium & normal-scale UAV targets
(Medium & Normal, [30, inf)) account for less than 2.5%
(632 targets).

In contrast, in the IRBFD-real dataset, tiny-scale UAV
targets account for approximately 25.8% (5,383 targets),
mini-scale UAV targets account for approximately 68.8%
(14,345 targets), small-scale UAV targets account for only
1.7% (356 targets), and medium & normal-scale UAV tar-
gets account for less than 0.2% (36 targets).

The real-world dataset, IRBFD-real, closely reflects the
challenges of real-world anti-UAV scenarios. The signifi-
cant proportion of tiny and mini UAV targets highlights the
difficulty of detecting smaller targets, making it more rep-
resentative of real-world application needs.

Comprehensiveness of UAV Target Position Distri-
bution. Figure 4 illustrates the position distribution of
UAV targets within the IRBFD dataset, including both the
synthetic dataset (IRBFD-syn) and the real-world dataset
(IRBFD-real).

The UAV targets in the IRBFD dataset are comprehen-
sively distributed across the entire image space, as shown in
both subfigures. This design ensures that the datasets cover
a wide range of spatial configurations, providing diverse
scenarios for evaluating nonuniformity correction (NUC)
and UAV detection methods. The distribution of targets re-
flects a balanced dataset that supports robust model training
and testing across varying environmental conditions.

3. More Training Details about the UniCD
When training UniCD on the IRBFD-syn dataset, we ini-
tially train the NUC module and the infrared UAV target de-
tection module separately. During the training of the NUC
module, the loss function is defined as shown in Sec. 3,
Eq. (5) of the main text. For the infrared UAV target de-
tection module, the loss function is defined as shown in

(a) Position distribution of targets in the IRBFD-syn

(b) Position distribution of targets in the IRBFD-real

Figure 4. Position distribution of targets in the IRBFD dataset.

Eq. (8) of the main text. Once both sub-modules are suf-
ficiently trained, we proceed to train the union framework.
In this phase, the loss function is given by Eq. (11) of the
main text, where the BR loss is designed to balance the con-
flict between the NUC module and the UAV target detection
module.

On the IRBFD-real dataset, we pre-train only the UAV
target detection module, while the NUC module retains the
weights trained on the IRBFD-syn dataset without further
updates. During union training, the NUC module is frozen,
and the loss function defined in Eq. (11) of the main text is
used for optimization.

4. More Quantitative Comparisons of UniCD
with Existing Methods

We further expand the experiments on the synthetic dataset
IRBFD-syn and the real-world dataset IRBFD-real, with the
results presented in Tab. 1 and Tab. 2, to verify the superior
performance of the proposed UniCD framework.

On the IRBFD-syn dataset, we evaluate additional tar-
get detection methods (DINO [10] and MSHNet [7]) un-
der separate strategies. The experiments demonstrate that,
among the separate strategies, DL-driven correction meth-
ods (e.g., DMRN [1] ) significantly improve image qual-



Table 1. Quantitative comparison of the proposed method with
SOTA methods on the synthetic dataset IRBFD-syn. For the sep-
aration strategy, each correction method corresponds to multiple
different detection methods. Bold and underline indicate the best
and the second best results, respectively.

Strategy
Module Metrics

NUC Detection Pub’Year PSNR ↑ SSIM ↑ P ↑ R ↑ FPS ↑

Direct -

Deformable DETR ICLR’21

- -

0.614 0.630 24
DINO ICLR’23 0.904 0.640 26

DAGNet TII’23 0.994 0.635 43
LESPS CVPR’23 0.033 0.446 12

MSHNet CVPR’24 0.407 0.421 41
YOLO11L 2024 0.963 0.602 42

Separate

Liu

DINO

IPT’16 16.800 0.8289

0.868 0.599 <1
MSHNet 0.686 0.663 <1

YOLO11L 0.898 0.574 <1
DAGNet 0.978 0.578 <1

DMRN

DINO

GRSL’19 24.467 0.8600

0.841 0.585 23
MSHNet 0.669 0.663 35

YOLO11L 0.923 0.550 35
DAGNet 0.966 0.595 36

Shi

DINO

AO’22 13.974 0.7783

0.813 0.557 <1
MSHNet 0.584 0.618 <1

YOLO11L 0.924 0.455 <1
DAGNet 0.966 0.472 <1

TV-DIP

DINO

IPT’23 13.397 0.6374

0.086 0.115 21
MSHNet 0.078 0.077 29

YOLO11L 0.131 0.020 29
DAGNet 0.599 0.020 30

AHBC

DINO

TGRS’24 13.954 0.6763

0.417 0.294 <1
MSHNet 0.300 0.208 <1

YOLO11L 0.825 0.080 <1
DAGNet 0.724 0.040 <1

Union UniCD - 31.961 0.9827 0.999 0.822 32

Table 2. Quantitative comparison of the proposed method with
SOTA methods on the real dataset IRBFD-real. Bold and
underline indicate the best and the second best results, respec-
tively.

Strategy NUC Detection SCRG ↑ P ↑ R ↑

Direct -
DINO

-
0.971 0.660

YOLO11L 0.966 0.843
DAGNet 0.992 0.871

Separate

TV-DIP
DINO

0.412
0.094 0.083

YOLO11L 0.521 0.024
DAGNet 0.663 0.026

DMRN
DINO

0.997
0.687 0.480

YOLO11L 0.918 0.296
DAGNet 0.929 0.345

AHBC
DINO

1.146
0.964 0.649

YOLO11L 0.940 0.633
DAGNet 0.986 0.699

Union UniCD 1.286 0.994 0.901

ity and achieve notable PSNR and SSIM results. However,
their detection performance is limited due to the indepen-
dent handling of correction and detection modules, result-
ing in low recall. Traditional model-driven correction meth-
ods (e.g., Liu [6] , Shi [8] , and AHBC [9] ) struggle to
handle severe degradation scenarios, further impairing de-
tection accuracy. In contrast, UniCD achieves a PSNR of
31.961 and an SSIM of 0.9827 while maintaining outstand-
ing detection precision (P = 0.999) and recall (R = 0.822),

showcasing its ability to handle image correction and target
detection simultaneously in a unified framework.

On the IRBFD-real dataset, we expand the analysis with
more NUC methods and target detection combinations un-
der a separate processing strategy. The experiments reveal
that separate strategies, such as TV-DIP [5] and AHBC, face
significant limitations on real-world data. For instance, TV-
DIP often deteriorates the image content, resulting in ex-
tremely low detection precision and recall. While AHBC
performes better in certain scenarios, its overall precision
and recall still fell short compared to UniCD. In contrast,
UniCD consistently achieves a SCRG of 1.286 and sur-
passed all other methods with a precision of P = 0.994 and
a recall of R = 0.901. These results highlight UniCD’s
adaptability and robustness in handling diverse real-world
nonuniformity scenarios.

Furthermore, UniCD’s real-time processing capability
(32 FPS) ensures its practical deployment even under
resource-constrained conditions. The experimental results
further confirm that UniCD provides a comprehensive so-
lution to address the challenges posed by nonuniformity in
infrared UAV detection tasks.

5. More Qualitative Comparisons of UniCD
with Existing Methods

We evaluate more correction-then-detection methods on
both synthetic and real-world datasets across diverse scenar-
ios, including buildings, hillsides, clouds, forests, and urban
regions. These visualizations further validate the findings
from the quantitative experiments presented in the main pa-
per.

Figure 5 presents the qualitative results on the synthetic
dataset. The analysis is supplemented by including DINO
and MSHNet as detection methods applied to various NUC
correction approaches. The results indicate that traditional
NUC methods, such as Liu, TV-DIP, and AHBC, paired
with DINO or MSHNet, often fail to effectively handle se-
vere nonuniformity effects:
• Liu + DINO/MSHNet results in extremely low detection

confidence in most scenarios (e.g., 0.02 confidence or un-
detected targets in hillside scenes) due to insufficient cor-
rection of the bias field.

• TV-DIP + DINO/MSHNet fails to restore sufficient tar-
get features, particularly in forested or cluttered environ-
ments, leading to missed detections.

• AHBC + DINO/MSHNet, while slightly more effective,
still produces false positives or weak confidence scores.
In contrast, our UniCD consistently outperforms all

these combinations, achieving clear corrected images and
accurate UAV target detection with high confidence scores
(1.00 across all scenarios). This superior performance is
attributed to the robust integration of parametric modeling
in the NUC module and the auxiliary loss in the detection
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Figure 5. Visual comparison of results from separate correction-then-detection methods and our UniCD on the synthetic dataset IRBFD-
syn . Closed-up views are shown in the left bottom corner. Boxes in green and red represent ground-truth and correctly detected targets,
respectively.



backbone, enabling accurate parameter estimation and en-
hanced feature representation under severe nonuniformity
conditions.

Figure 6 shows the qualitative results on the real-world
dataset. We further add the following content: (1) DINO
as the detection network applied to different NUC correc-
tion methods. (2) DMRN as a newly introduced NUC
method, combined with three detection methods: DINO,
YOLO11L, and DAGNet. The results demonstrate the limi-
tations of conventional NUC methods when applied to real-
world data:
• TV-DIP + DINO fails to effectively correct the bias

field and instead degrades image content, resulting in
extremely low detection confidence scores or entirely
missed targets.

• DMRN + DINO, while improving bias field correction,
introduces block artifacts that impair detection accuracy.
DMRN + YOLO11L [4] and DMRN + DAGNet [2] show
moderate improvements but struggle to maintain consis-
tent detection in complex urban or cloudy scenes.

• AHBC + DINO performs inconsistently, with detection
confidence dropping as low as 0.36 in dense cloud sce-
narios.
In contrast, our UniCD provides consistently superior

results across all scenarios, achieving high detection con-
fidence scores (1.00) even in challenging conditions, such
as dense clouds and cluttered urban environments. These
results highlight UniCD’s ability to simultaneously balance
correction and detection tasks while effectively addressing
complex real-world nonuniformity effects.

Overall, these supplementary visualization results
demonstrate the superiority of UniCD compared to conven-
tional approaches in both synthetic and real-world settings.
This further reinforces UniCD’s capability to address chal-
lenging nonuniformity effects while delivering robust and
reliable UAV detection performance.

6. Further Ablation Studies

6.1. Impact of Polynomial Degree on the NUC Mod-
ule

In this section, we provide a detailed discussion on the ra-
tionale for selecting the third-degree polynomial model.

Definition of the Polynomial Basis Surfaces. As pre-
sented in Eq. (1), the polynomial model B(xi, yj) serves as
an effective representation of a surface in a two-dimensional
space, where each term xt

iy
s
j represents a basis surface that

contributes to the overall shape of the surface. The influ-
ence of each basis surface is modulated by its correspond-
ing coefficient at,s, which determines the weight and impact
of that component. By appropriately adjusting these coef-
ficients, the polynomial model can capture complex spa-
tial variations and transformations, making it well-suited

Table 3. Robustness analysis of UniCD across different levels of
nonuniformity degradation.

k PSNR SSIM P R
3 29.119 0.9891 0.998 0.820
5 34.907 0.9950 0.998 0.820
12 38.361 0.9968 0.998 0.820

for modeling nonuniformity bias fields. This structure rep-
resentation strikes a balance between expressiveness and
computational efficiency, providing a flexible yet compact
framework for accurately representing diverse patterns of
bias field distortions.

Why Choose the Third-degree Polynomial? As shown
in Fig. 7, the comparison of 2D basis surfaces and their cor-
responding 3D visualizations across different polynomial
degrees highlights key considerations for selecting the opti-
mal degree. Higher-degree polynomials inherently encom-
pass the basis surfaces of lower-degree ones, which indi-
cates that very low-degree polynomials lack sufficient ex-
pressive power to model complex spatial variations in the
bias field effectively. However, as the degree increases be-
yond three, redundant basis surfaces emerge (highlighted
in red boxes in the figure), introducing overlapping repre-
sentations. This redundancy not only diminishes modeling
efficiency but also increases the risk of overfitting and nu-
merical instability.

In addition, higher-degree polynomials require estimat-
ing a larger number of coefficients, which complicates the
optimization process and slows convergence during train-
ing. In contrast, the third-degree polynomial strikes an ideal
balance by offering adequate expressive power while main-
taining computational simplicity and stability, making it the
optimal choice for our framework.

Furthermore, the quantitative results in Tab. 3 of the
main text also demonstrate that the third-degree polynomial
achieves the best performance among all configurations. A
second-degree polynomial, with only 6 coefficients, strug-
gles to model the bias field accurately, resulting in poor cor-
rection performance (PSNR = 13.5279, SSIM = 0.7590) and
low recall (R = 0.433). Increasing the degree to three im-
proves both correction quality (PSNR = 39.050, SSIM =
0.9970) and detection performance (R = 0.810), achieving
the best balance between accuracy and complexity. Poly-
nomials of higher degrees (e.g., 4 and 5) introduce more
coefficients, leading to a slight decline in correction per-
formance and recall (e.g., PSNR = 31.744, R = 0.788 for
degree 4). This indicates diminishing returns and potential
risks of overfitting.

6.2. Impact of Different Levels of Degradation on
UniCD

To analyze the adaptability of our proposed UniCD frame-
work, we conduct experiments on the IRBFD-syn dataset
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Figure 6. Visual comparison of results from separate correction-then-detection methods and our UniCD on the real dataset IRBFD-real.
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Figure 7. Visualization of 2D and 3D basis surfaces for polynomials of different degrees. The surface sets for the second-degree, third-
degree, and fourth-degree models are highlighted with yellow, green, and blue background boxes, respectively. We employ blue and red
boxes to represent similar redundant surfaces for a degree equal to 4.

by training the model on images with a fixed degradation
level (k = 10) and testing it across varying levels of degra-
dation (k = 3, 5, 12). The results, summarized in Tab. 3
demonstrate the robustness of our method under different
nonuniformity conditions.

Specifically, the PSNR and SSIM values increase con-
sistently with higher k-values, indicating that the bias field
correction module effectively reconstructs clearer images as
the degradation severity rises. This improvement reflects
the model’s ability to handle more challenging conditions



Table 4. Comparison of number of parameters and computational
complexity for different NUC methods.

Methods Params (M) FLOPs (G)
DMRN 0.7398 76.2524
TV-DIP 2.1817 75.3930

Our NUC 0.3966 1.6809

with greater nonuniformity intensity.
Despite the variation in image quality, the detection per-

formance metrics (P and R) remain consistent across all
tested k-values. Both precision (P = 0.998) and recall (R =
0.820) are maintained at high levels, showcasing UniCD’s
ability to balance correction and detection tasks effectively.
This result highlights the flexibility and generalization capa-
bility of the framework, ensuring reliable performance even
when deployed under varying real-world degradation sce-
narios.

These findings confirm that UniCD is not only robust to
different nonuniformity levels but also achieves stable de-
tection results, reinforcing its practical applicability in di-
verse environmental conditions.

6.3. Number of Parameters and Computational
Complexity of the NUC Module

Table 4 gives a comparison of number of parameters and
computational complexity (measured in FLOPs) among dif-
ferent NUC methods, including DMRN, TV-DIP, and our
proposed NUC module. They are all methods based on deep
learning. The results demonstrate the significant advantages
of our NUC method in terms of both model efficiency and
computational complexity.
• Number of Parameters. Our NUC module requires

only 0.3966 million parameters, which is approximately
46.4% smaller than DMRN (0.7398M) and 81.8% smaller
than TV-DIP (2.1817M). This reduction in number of pa-
rameters directly translates to lower memory usage and
faster runtime performance, making it more suitable for
resource-constrained applications.

• Computational Complexity. The proposed NUC mod-
ule achieves a significant reduction in Floating Point
Operations (FLOPs), requiring only 1.6809G, which is
55 times smaller than DMRN (76.2524G) and 44 times
smaller than TV-DIP (75.3930G). Such a significant re-
duction indicates that our module is highly optimized for
real-time processing, further enhancing its practical de-
ployment capabilities.
In summary, the results demonstrate that our NUC mod-

ule not only achieves superior nonuniformity correction
performance but also does so with minimal computational
overhead, significantly outperforming other methods in
terms of efficiency. These attributes make our method an
ideal solution for real-world scenarios where computational

Figure 8. Comparation of the localization and classification loss
curves during training without and with the TEBS loss.

resources are limited.

6.4. Impact of the TEBS Loss on the Detection Mod-
ule

In this section, we further demonstrate the superiority of
the TEBS loss, highlighting its effectiveness in improving
training performance, as well as enhancing target features
while suppressing background.

Figure 8 illustrates the comparison of the localization
and classification loss curves during training without and
with the TEBS loss. The upper plot shows the location
loss, while the lower plot represents the classification loss.
It is evident that with the TEBS loss (solid orange line),
both the location and classification losses converge more
smoothly and to significantly lower values compared to
training without the TEBS loss (dashed blue line). Specif-
ically, the TEBS loss effectively stabilizes the training pro-
cess, reduces oscillations, and enhances convergence speed,
demonstrating its clear advantage in improving both local-
ization and classification performance.

Figure 9 shows the comparison of feature maps from dif-
ferent stages of the detection backbone without and with the
TEBS loss. The TEBS loss imposes explicit supervision on
the target and background masks during training, which sig-
nificantly enhances the feature representation of UAV tar-
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Figure 9. Comparison of feature maps from different stages of the detection backbone without and with the TEBS loss. The green dashed
circles and solid circles represent the target enhancement effects without and with the TEBS loss, respectively. The red dashed circles
represent the residual background.



Table 5. Impact of different union training methods on perfor-
mance.

Row Correction
loss

Frozen
NUC

Detection
loss

BR
loss

Metrics
PSNR SSIM P R

1
√

×
√

× 33.024 0.9827 0.998 0.791
2 × ×

√
× 17.940 0.8910 0.989 0.811

3 ×
√ √

× 37.722 0.9960 0.998 0.804
4 × ×

√ √
31.961 0.9827 0.999 0.822

gets while suppressing irrelevant background information.
From Stage 1 to Stage 4, it can be observed that without

the TEBS loss, the feature maps exhibit noticeable resid-
ual background interference (highlighted by red circles), es-
pecially in complex scenes such as urban areas or dense
vegetation. This interference not only reduces the distin-
guishability of the UAV target but also increases the like-
lihood of false positives or missed detections. In contrast,
with the TEBS loss, the feature maps progressively refine
the representation of the UAV targets, as indicated by the
high-intensity regions (green circles) becoming more fo-
cused and distinct. The background clutter is effectively
suppressed, particularly in later stages of the backbone net-
work.

This improvement highlights the contribution of the
TEBS loss in enforcing spatial and semantic constraints
on the backbone features, enabling the network to priori-
tize target regions while mitigating distractions from irrele-
vant features. As a result, the detection performance of the
framework is substantially enhanced, as corroborated by the
quantitative results and visualizations provided in the main
text and supplementary material.

6.5. Impact of the BR Loss on the Union Framework

In this section, we focus on discussing the impact of var-
ious union training methods on the relationship between
the NUC and target detection sub-tasks. Table 5 presents
a comparison of four different union training strategies for
combining the correction and detection modules, highlight-
ing the impact of the BR loss in the UniCD framework.

(1) Training with the correction and detection losses
(Row 1). In this approach, the correction and detection
losses are directly added to jointly train the two modules.
However, since the optimization objectives of the two losses
differ, this method introduces conflicts that prevent either
module from achieving optimal performance. As a result,
both correction and detection metrics suffer from subopti-
mal outcomes.

(2) Training with the detection loss only (Row 2). This
strategy uses only the detection loss to train both the correc-
tion and detection modules. Due to the lack of supervision
on the correction module, its performance degrades signif-
icantly, leading to a sharp decline in PSNR and SSIM. Al-
though the detection metrics improve slightly (e.g., Recall

= 0.811), the severe degradation in correction quality makes
this method unsuitable for scenarios requiring high-quality
visual outputs.

(3) Training with the detection loss and the frozen cor-
rection module (Row 3). In this method, the pre-trained
correction module is frozen, and only the detection module
is updated during training. While this approach achieves the
best correction metrics (PSNR = 37.722, SSIM = 0.9960),
the lack of interaction between the modules means that the
correction module does not retain information beneficial to
detection. Consequently, the detection metrics decline, with
Recall dropping to 0.804.

(4) Training UniCD with the detection loss and the BR
loss (Row 4). Our UniCD framework introduces the BR
loss to enforce feature-level supervision from the detection
backbone on the correction module. This self-supervised
mechanism ensures that the correction module not only
maintains visual quality (PSNR = 31.961, SSIM = 0.9827)
but also aligns with the detection objectives. By jointly
training both modules, the detection module can guide the
correction module to produce feature maps that enhance
UAV detection performance, achieving the highest detec-
tion metrics (P = 0.999, R = 0.822). This demonstrates
the effectiveness of the BR loss in balancing the objectives
of correction and detection while achieving superior overall
performance.

6.6. Detection-Friendliness of the NUC Module un-
der Union Training

In this section, we verify that the proposed union train-
ing method enables the NUC module to produce detection-
friendly results, which are reflected in the feature maps of
the detection backbone. As shown in Fig. 10, we present the
feature maps across four stages of the detection backbone
under separate and union training strategies: the separate
training approach (first row and third row) and the union
training approach (second row and fourth row).

In the separate training approach, the NUC module and
the detection network are trained independently. As shown
in the feature maps from the separate training approach, the
extracted features exhibit scattered and noisy activations,
with limited focus on the UAV target regions. This indi-
cates a lack of alignment between the correction and detec-
tion tasks, leading to suboptimal feature representations for
the detection network.

In contrast, the union training approach integrates the
NUC module and detection network into a unified end-to-
end framework. As observed in the second row and fourth
row, the feature maps from union training display more con-
centrated and structured activations around the UAV tar-
get regions. This improvement highlights the detection-
friendliness of the features produced by the NUC module
under joint optimization, effectively suppressing irrelevant
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Figure 10. Visualization comparison of feature maps across four stages of the detection backbone under separate and union training. The
green and red dashed circles represent the enhanced target region and the significant residual background, respectively.

background information and enhancing the features critical
for accurate UAV detection.

This comparison demonstrates that union training not
only improves the compatibility between the NUC and de-
tection modules but also enables the NUC module to pro-
duce features that are more beneficial for downstream de-
tection tasks, resulting in improved overall performance.

7. Calculation of Signal-to-Clutter Ratio Gain
(SCRG)

The signal-to-clutter ratio (SCR) is utilized to measure the
difficulty of target detection in a local region, can be calcu-
lated by:

SCR =
|µt − µb|

σb
, (3)

where µt and µb represent the average pixel values of the
target region and the surrounding neighboring region, re-
spectively. σb is the standard deviation of the pixel val-
ues in the surrounding neighboring region of the target. As
shown in Fig. 11, we assume the size of the small UAV tar-
get is a × b, and then the size of its background region is
(a+2d)× (b+2d), where d is the pixel width of neighbor-
ing area. We set d = 5 pixels in our experiment.

The signal-to-clutter ratio gain (SCRG) is the ratio of
SCR in the corrected image to that in the original image,
used to evaluate the improvement in target detectability
achieved by the correction method, which can be defined

Target

region

Local background

b

d

d

a

Figure 11. The bounding box of a small target and the adjacent
background box.

as:

SCRG =
SCRout

SCRin
. (4)

8. Calculation of the Cosine Similarity Be-
tween Two Feature Maps

To compute the cosine similarity between two feature maps
A and B, we assume they have the same shape, m×n (i.e.,
A and B each have m rows and n columns). The cosine
similarity between feature maps can be interpreted as the
cosine similarity between each pair of row vectors from A
and B, resulting in an m×m similarity matrix.



8.1. Definition of Cosine Similarity
The cosine similarity between two vectors a and b is de-
fined as:

Cos Sim(a,b) =
a · b

∥a∥2∥b∥2
, (5)

where:
• a · b =

∑n
k=1 akbk is the dot product of a and b.

• ∥a∥2 =
√∑n

k=1 a
2
k and ∥b∥2 =

√∑n
k=1 b

2
k are the L2

norms of a and b, respectively.

8.2. Computing the Dot Product Matrix
For two feature maps A and B, let Ai and Bj represent the
i-th row of A and the j-th row of B, respectively. We can
construct a dot product matrix D, where each element Dij

represents the dot product of row Ai with row Bj :

Dij = Ai ·Bj =

n∑
k=1

AikBjk. (6)

Thus, the matrix D can be expressed as:

D = ABT . (7)

8.3. Calculating the L2 Norms of Row Vectors
For each row Ai of feature map A and each row Bj of fea-
ture map B, we compute their L2 norms:

∥Ai∥2 =

√√√√ n∑
k=1

A2
ik and ∥Bj∥2 =

√√√√ n∑
k=1

B2
jk. (8)

The norms for all rows of A and B can be represented as
column vectors:

∥A∥2 =


∥A1∥2
∥A2∥2

...
∥Am∥2

 , ∥B∥2 =


∥B1∥2
∥B2∥2

...
∥Bm∥2

 . (9)

8.4. Forming the Outer Product of Norms
Using the L2 norms ∥A∥2 and ∥B∥2, we construct an m×m
matrix N , where each element Nij represents the product of
the norms:

Nij = ∥Ai∥2∥Bj∥2. (10)

Therefore, the matrix N can be represented as:

N = ∥A∥2∥B∥T2 . (11)

8.5. Calculating the Cosine Similarity Matrix
Finally, we compute the cosine similarity matrix by divid-
ing each element of the dot product matrix D by the corre-
sponding element in the norm product matrix N :

Cos Simij =
Dij

Nij
=

Ai ·Bj

∥Ai∥2∥Bj∥2
. (12)

In matrix form, the cosine similarity between feature
maps A and B is given by:

Cos Sim(A,B) =
ABT

∥A∥2∥B∥T2
. (13)

8.6. Final Formula Summary
Thus, the cosine similarity matrix can be expressed as:

Cos Sim(A,B) =
ABT√∑n

k=1 A
2
ik ·

√∑n
k=1 B

2
jk

. (14)

This provides the cosine similarity for each pair of row
vectors in A and B.
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