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1. Details of Compared Methods
• BECO [4] learns all possible noisy data in a collaborative

training manner. The experiments we conducted retain
only non-fuzzy labels, creating pseudo-labels for fuzzy
regions as [4].

• GCE [6] leverages a robust loss function that combines
cross-entropy (CE) loss with mean absolute error (MAE)
loss to handle label noise.

• MW-Net [5] employs an MLP network to learn a weight-
ing function for noisy data.

• CIRL [1] utilizes a clustering-inspired loss function that
transforms regions with label noise from supervised
learning to unsupervised clustering.

2. Supplementary Experimental Results

2.1. Experiments on Organ Segmentation

We demonstrate DALE’s performance on the organ seg-
mentation task in the table below. It shows that DALE
brings significant improvements to organ segmentation for
various models, which DALE’s applicability. We demon-
strate DALE’s performance on the organ segmentation task
in the table below. The results show that DALE signifi-
cantly enhances organ segmentation across various models,
achieving an average Dice score improvement of 2.27%.
This illustrates DALE’s effectiveness and broad applicabil-
ity in medical image segmentation.

Synapse
Method Backbone Dice↑ 95HD↓ Aorta↑ GB↑ KL↑ KR↑ Liver↑ PC↑ SP↑ SM↑

Growth
Rate

EMCAD 0.7507 46.0207 0.8403 0.5988 0.6852 0.7729 0.9358 0.5588 0.8603 0.7537
*EMCAD CNN-based 0.7659 38.0397 0.8663 0.6066 0.7804 0.7244 0.9403 0.5955 0.8516 0.7622 +2.02%

Convformer 0.7666 38.1309 0.8714 0.6158 0.7961 0.7629 0.9430 0.5231 0.8574 0.7628
*Convformer 0.7775 31.1414 0.8696 0.6382 0.8255 0.7735 0.9349 0.5705 0.8477 0.7600 +1.43%

TransFuse 0.7748 31.6900 0.8723 0.6313 0.8187 0.7702 0.9408 0.5586 0.8508 0.7562
*TransFuse 0.7934 29.9120 0.8852 0.6845 0.7990 0.7864 0.9498 0.5998 0.8700 0.7723 +2.40%

Xboundformer 0.7649 34.7228 0.8622 0.6262 0.7561 0.7114 0.9345 0.5695 0.8676 0.7919
*Xboundformer

CNN-
Transformer

hybrid

0.7864 30.7898 0.8589 0.6289 0.8242 0.7690 0.9386 0.6038 0.8679 0.7998 +2.81%

SwinUmamba 0.7485 42.1225 0.8513 0.5903 0.7625 0.7006 0.9257 0.5538 0.8363 0.7675
*SwinUmamba Mamba 0.7687 32.7155 0.8699 0.6180 0.8032 0.7532 0.9218 0.5727 0.8581 0.7527

+2.70%

Average Growth Rate +2.27%

Table 1. Evaluation of the proposed DALE on various advanced
models using Synapse datasets.

2.2. Experiments on SAM-Based Models
We conducted experiments on SAM-based models, includ-
ing SAM2 [3], MedSAM-2 [7], and InstaSAM [2], using
skin disease datasets. As shown in Table 2, DALE sig-
nificantly improves the segmentation performance of these
models, achieving up to a 4.5% increase in accuracy for skin
disease segmentation.

ISIC2016&PH2
Model Model Type Dice↑ mIoU↑ 95HD↓ ASD↓

Growth
Rate

SAM2 0.8514 0.7563 9.6231 1.7151
*SAM2 0.8897 0.8091 5.7227 0.8856 +4.50%

MedSAM-2 0.8856 0.8031 5.3054 0.8379
*MedSAM-2 0.8991 0.8248 4.2772 0.7085 +1.52%

InstaSAM 0.8961 0.8195 5.0288 0.8121
*InstaSAM

SAM-
based

0.9201 0.8566 2.9673 0.4623 +2.68%

Table 2. DALE on ISIC2016 & PH2 (*: Trained with DALE).
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