Parameterized Blur Kernel Prior Learning for Local Motion Deblurring

Supplementary Material

In this supplementary material, we provide more details
about applying the selective scanning mechanism (S6) to
vision data, then we analyze the impact of different length
threshold selections, and present additional visual compari-
son results on test images.

1. Selective Scanning Mechanism

In the global branch of our dual-branch deblurring network,
we utilize the State Space Model (SSM) to capture long-
range dependencies of blurry image features. A crucial
modules in SSM is the Selective Scanning Mechanism (S6).
Here we provide a more detailed introduction to it.

The traditional Mamba [3] framework is designed for
processing one-dimensional sequential data, which is par-
ticularly suitable for tasks involving long-sequence model-
ing, such as Natural Language Processing (NLP). However,
when it comes to the non-sequential structure of 2D vision
images, directly applying the selective scanning mechanism
in Mamba is problematic due to the lack of the essential
sequential arrangement in 2D data. To address this issue,
VMamba [7] proposes the visual state space model back-
bone with linear time complexity, specifically tailored for
vision tasks. Based on the approaches in [4, 7], we intro-
duce the 2D selective scanning mechanism for processing
the input image features. As illustrated in Figure 1, the 2D
image feature is flattened into 1D sequences by scanning
along four distinct directions, the spatial signal is converted
into four sequences in parallel, then processed by the dis-
crete state-space equation described in the main paper:
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By integrating information from pixels scanned in dif-
ferent directions, the S6 module effectively captures long-
range dependencies with linear complexity. Finally, the out-
put sequences are reshaped back into the same structure as
the input features.

2. Selection of the Length Threshold

To obtain the fine-grained binary blur mask, we categorize
each pixel into either the sharp or blurry region based on
its kernel length parameter. Specifically, the kernel length
reflects the strength of the blur kernel: a larger length indi-
cates a severe degree of blur, while a smaller length suggests
that the pixel belongs to a sharp region. Based on this obser-
vation, pixels with a kernel length below the threshold are

Threshold | PSNR SSIM PSNR,,  SSIM,,
3 36.49 0.9335 29.13 0.8852
5 36.53 0.9340 29.15 0.8856
7 36.42 0.9328 28.98 0.8837

Table 1. The results of different length thresholds for deblurring
performance. The threshold of 5 demonstrated the best perfor-
mance, indicating an optimal balance between capturing blurred
regions and preserving the quality of sharp areas.

categorized as sharp, whereas those exceeding the thresh-
old are marked as blurry. Therefore, the length threshold
plays a critical role in defining the boundary between sharp
and blurry regions, directly influencing the characteristics
of the resulting blur mask.

Generally, a lower threshold will generate a wider blur
mask, capturing even mildly blurry areas. This ensures that
all potential blurry regions are included and reduces the risk
of missing subtle blurry areas, but a larger number of pix-
els are classified as blurry, resulting in a more inclusive
blur mask. Furthermore, a lower threshold may introduce
unnecessary interference in sharp regions, leading to over-
processing or artifacts. Conversely, a higher threshold re-
stricts the blur mask to focus on significantly blurry areas,
only regions with a higher degree of blur are classified as
blurry, resulting in a narrower blur mask. While this mini-
mizes interference with sharp areas and improves process-
ing efficiency, it risks overlooking mildly blurred regions,
potentially leaving some degradations unaddressed.

Therefore, the selection of the length threshold requires
careful consideration, as it directly affects the balance be-
tween coverage and precision. As illustrated in Figure 2, a
lower threshold produces a mask that covers a wider area,
which can lead to over-processing and artifacts in already
sharp regions. On the other hand, a higher threshold re-
stricts the mask to highly blurry areas, potentially neglect-
ing subtle blur and resulting in incomplete restoration. To
address this trade-off, we evaluated the impact of different
length thresholds on deblurring performance, as shown in
Table 1. Among the tested values, a threshold of 5 achieved
the best performance, keeping an optimal balance between
accurately capturing blurry regions and preserving the in-
tegrity of sharp areas. This choice ensures comprehen-
sive restoration while maintaining the quality of the sharp
background. Based on these findings, we adopt a length
threshold value of 5 in our experiments. This carefully
chosen threshold effectively guides the deblurring network,
ensuring precise and high-quality restoration.
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Figure 1. The illustration of the selective scanning mechanism. The input 2D image feature is flattened into 1D sequences by scanning
along four distinct directions, then the converted sequences are processed by the discrete state-space equation. Finally, the output sequences

are reshaped back into the same structure as the input features.
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Figure 2. Blur masks generated by different length thresholds. The selection of the length threshold value directly affects the balance
between coverage and precision: a lower threshold produces a mask that covers a wider area, while a higher threshold restricts the blur

mask to focus on significantly blurry regions.

3. Additional Visual Comparison Results

We present additional visual results on the ReLoBlur test-
set. The comparison methods include MIMO-Unet [2],
Restormer [8], NAFNet [1], LBAG+ [5] and LMD-VIT [6].
As shown in Figure 3 - 6, we can see that our method consis-
tently delivers superior visual results, effectively restoring
sharp edges and intricate details while maintaining the nat-
ural appearance of the image. Notably, our approach excels
at recovering complex textures and fine structures, partic-
ularly in regions heavily affected by motion blur. In con-
trast, other methods often leave residual blur or introduce
artifacts. Furthermore, our method preserves the sharpness
of the unaffected background. These results demonstrate
the effectiveness of our approach in addressing local mo-
tion blur with high visual fidelity.

The outstanding performance of our method is attributed
to several key innovations. First, the proposed parameter-
ized motion kernel modeling improves the accuracy of ker-
nel estimation and effectively captures motion blur charac-
teristics. The fine-grained blur mask derived from the es-
timated kernel length ensures targeted deblurring, focusing
on blurry areas while preserving the sharpness of unblurred
regions. The dual-branch network leverages Mamba for
capturing global dependency and a mask-guided CNN for
precise local restoration. Additionally, the integration of a
shared memory bank enhances the learning of motion pri-
ors, ensuring consistency and robust representation across
the network components. These advancements jointly en-
able sharper and artifact-free visual results, surpassing ex-
isting methods.
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Figure 3. Visual comparisons on the ReLoBlur testset, the models are trained on the ReLoBlur dataset. From left to right: local blurry
image, ground-truth, results by MIMO-Unet [2], Restormer [8], NAFNet [1], LBAG+ [5], LMD-VIiT [6] and PGDN (ours).
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Figure 4. Visual comparisons on the ReLoBlur testset, the models are trained on the ReLoBlur dataset. From left to right: local blurry
image, ground-truth, results by MIMO-Unet [2], Restormer [8], NAFNet [1], LBAG+ [5], LMD-ViT [6] and PGDN (ours).
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Figure 5. Visual comparisons on the ReLoBlur testset, the models are trained on the ReLoBlur dataset. From left to right: local blurry
image, ground-truth, results by MIMO-Unet [2], Restormer [8], NAFNet [1], LBAG+ [5], LMD-ViT [6] and PGDN (ours).
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Figure 6. Visual comparisons on the ReLoBlur testset, the models are trained on the ReLoBlur dataset. From left to right: local blurry
image, ground-truth, results by MIMO-Unet [2], Restormer [8], NAFNet [1], LBAG+ [5], LMD-VIiT [6] and PGDN (ours).
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