
Recognition-Synergistic Scene Text Editing

Supplementary Material

A. Summary

This supplementary material comprises four components:
(1) detailed descriptions of MMPD in our RS-STE; (2) im-
plementation details of the fine-tuning stage of detokenizer
and data augmentation for recognition; (3) additional ab-
lation studies on model size and the feature representation
approach; (4) limitation and analysis; and (5) more visu-
alization examples generated by various scene text editing
methods and our RS-STE.

B. Details of MMDP

As described in Section 3, the input of MMPD can be de-
noted as [Et
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query] ∈ R2(L+N)×C , where L

presents the length of the text embeddings and N presents
the length of the flattened image embeddings. In our con-
figuration, we set L = 32, N = 256 and C = 384. Our
MMPD consists of 12 transformer blocks, each of which
includes a layer normalization layer, causal self-attention
with 6 heads, and a fully connected layer.

C. More Implementation Details

Fine-tuning Stage of Detokenizer. We initialize the pre-
trained VAE from LDM [5] using configuration parameters
f = 4, Z = 8192 and d = 3. To improve the decoder’s
performance in reconstructing text images from continu-
ous features, we fine-tune the VAE on our training datasets.
Specifically, we remove the codebook-related components
from the pre-trained model and train it for 100k iterations
using the Adam [3] optimizer with a batch size of 256, and
a learning rate of 1.25 × 10−3. The reconstruction perfor-
mance of the VAE before and after fine-tuning on the evalu-
ation dataset Tamper-Syn2k and ScenePair is shown in Ta-
bles 6 and 7. Compared to the pre-trained VAE, the fine-
tuned VAE demonstrates better image reconstruction per-
formance for text images. This metric also indicates the
upper limit of the image editing performance when using
the VAE decoder as an Image Detokenizer.
Details of Data Augmentation for Recognition. To eval-
uate the effectiveness of our data augmentation strategy,
we use the Union14M-L dataset on classical recognition
model ABINet [1], and state-of-the-art recognition model
MAERec-S [2]. We compare our method with MOS-
TEL [4] to validate its superiority. For instance, on the ABI-
Net [1] model, we first evaluate the pre-trained ABINet [1]
on the Union14M-L dataset by testing on its evaluation set
and identifying cases of incorrect recognition (”bad cases”).
These bad cases are then modified using our method or

Table 6. The image reconstruction performance of VAE before
and after fine-tuning on Tamper-Syn2k.

Fine-tune Tamper-Syn2k

MSE↓ PSNR↑ SSIM↑ FID↓

% 0.00453 25.22 83.17 30.91
! 0.00049 34.01 98.57 13.34

Table 7. The image reconstruction performance of VAE before
and after fine-tuning on ScenePair.

Fine-tune ScenePair

MSE↓ PSNR↑ SSIM↑ FID↓

% 0.00169 29.77 90.87 19.34
! 0.00064 34.00 97.26 4.10

MOSTEL [4], generating additional text images that main-
tain a similar style but contain varied content for further
fine-tuning of ABINet [1]. We visualize some of the tar-
geted augmented data generated by RS-STE in Figure 6.

In implementation, we employ each scene text editing
model to randomly generate five variations per bad case,
creating images with different textual content while retain-
ing the original style. Subsequently, we utilize the corre-
sponding pre-trained recognition models to recognize the
generated targeted augmented images. Any data with an
edit distance between the recognition result and the ground
truth exceeding one-third of the word length is discarded.
This process results in about 250k and 170k augmented
images for ABINet [1] and MAERec-S [2], respectively.
The models are subsequently fine-tuned on a combination
of these augmented datasets and the Union14M-L dataset.

D. More Ablation Studies

D.1. Effect of Model Size on Performance

To further investigate the effect of model size on editing per-
formance, we conduct experiments using an 85.5M MMDP
model, configured with an embedding dimension of 768
and 12 attention heads. The results, presented in Table 8,
demonstrate that increasing the model size significantly en-
hances the text editing capabilities of our approach. There-
fore, in practical application, different model configurations
can be selected based on a trade-off between computational
resources and performance requirements.



Table 8. The impact of model scaling on editing performance of RS-STE. ’Tiny’ denotes the 22.5M MMDP while ’Small’ denotes the
85.5M one.

Model MMDP Tamper-Syn2k Tamper-Scene ScenePair

#Param. MSE↓ PSNR↑ SSIM↑ FID↓ RecAcc↑ MSE↓ PSNR↑ SSIM↑ FID↓ RecAcc ↑
RS-STE-Tiny 22.5M 0.0076 22.54 72.90 30.29 86.12 0.0267 17.35 46.09 41.37 91.80
RS-STE-Small 85.5M 0.0072 22.87 73.18 31.34 94.14 0.0254 17.55 46.97 39.13 91.56

Table 9. The image reconstruction performance of continuous VAE and discrete VAE.

Condition Tamper-Syn2k ScenePair

MSE↓ PSNR↑ SSIM↑ FID↓ MSE↓ PSNR↑ SSIM↑ FID↓
discrete 0.00146 30.18 93.79 21.35 0.00080 32.88 96.74 4.55
continuous 0.00049 34.01 98.57 13.34 0.00064 34.00 97.26 4.10
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Figure 6. The visualization of targeted augmented data generated by RS-STE from bad cases of recognition model ABINet [1].
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Figure 7. Editing results of different methods on curved text.

Table 10. Text image editing performance with discrete and con-
tinuous feature representation methods.

Methods
Tamper-Syn2k

MSE↓ PSNR↑ SSIM↑ FID↓

discrete 0.0167 19.03 70.57 46.73
continuous 0.0076 22.54 72.90 30.29

D.2. Discrete Feature Representation

Since the pre-trained VAE from LDM [5] utilizes Vector
Quantization [6], we also retain the fine-tuned VQ-VAE in
our approach, using its encoder and codebook as the tok-
enizer and its decoder as the detokenizer. This design en-
ables training on the discrete representations of both the
source image and target text, leveraging the VAE’s encod-
ing and decoding mechanisms to their full potential. How-
ever, as illustrated in Table 10, our results indicate that the
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Figure 8. Visualization examples of different ratio of recognition
loss weight λrec and reconstruction loss weight λrecon.

discrete feature encoding approach performs worse than the
continuous encoding strategy adopted in our method.

This can primarily be attributed to two factors: (1) The
discretization of images introduces information distortion,
resulting in poorer reconstruction quality compared to con-
tinuous representations. As shown in Table 9, for the given
dataset, the reconstruction performance of the discrete form
is inferior to that of the continuous form. (2) Continuous
representations effectively mitigate the inherent decoding
bias of the detokenizer. As discussed in Section 3, for con-
tinuous image features, reconstruction loss can be computed
on the detokenized images, ensuring pixel-level accuracy in
the final output. In contrast, for discrete representations, su-
pervision can only be applied to the discretized image fea-
tures decoded by the MMPD, leading to feature distortions
during the detokenization process.

D.3. Loss Weights

In the cyclic training stage described in Section 3.3, we ob-
serve that the ratio of the recognition loss weight, defined
as λrec = (λ6 + λ7)/2, to the image reconstruction loss
weight, defined as λrecon = (λ4+λ5)/2, plays a crucial role
in ensuring content and style consistency. Consequently, we
conduct an ablation study to examine the effects of varying
this ratio, as shown in Figure 8. Our findings indicate that a
ratio close to 10 consistently produces high-quality images.

E. Limitation and Analysis

A potential limitation of our method as well as most other
methods for scene text editing lies in the limited perfor-
mance when editing images with extremely large text cur-
vature, as shown in Figure 7. This limitation is mainly at-
tributed to the scarcity of such data in synthetic training
data. To further investigate this issue, we train our model
with additionally synthetic curved text samples generated
using the synthesis engine mentioned in Section 4.1, and
our method (RS-STE+) achieves robust curved text editing,
which implies that such limitation arises from insufficient
training data of curved text.

(a) Simple examples.

(b) Slanted examples.

(c) Examples with complex backgrounds.
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Figure 9. More visualization examples edited by RS-STE on un-
paired real-world dataset Tamper-Scene.

F. Visualization Examples of RS-STE
To further demonstrate the superiority of our RS-STE, we
include additional visualization results of the text images
before and after editing with RS-STE, as illustrated in Fig-
ure 9.
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