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1. Experimental Details
Models. Our experiments evaluate the effectiveness of
three models: DiT-XL, MAR-Large, and SiT-XL. Diffusion
Transformers (DiTs), inspired by Vision Transformer (ViT)
principles, process spatial inputs as sequences of patches.
The DiT-XL model features 28 transformer layers, a hidden
size of 1152, 16 attention heads, and a 2 × 2 patch size. It
employs adaptive layer normalization (AdaLN) to improve
training stability, comprising 675 million parameters and
trained for 1400 epochs. Masked Autoregressive models
(MARs) are diffusion transformer variants tailored for au-
toregressive image generation. They utilize a continuous-
valued diffusion loss framework to generate high-quality
outputs without discrete tokenization. The MAR-Large
model includes 32 transformer layers, a hidden size of 1024,
16 attention heads, and bidirectional attention. Like DiT,
it incorporates AdaLN for stable training and effective to-
ken modeling, with 479 million parameters trained over 400
epochs. Finally, Scalable Interpolant Transformers (SiTs)
extend the DiT framework by introducing a flow-based in-
terpolant methodology, enabling more flexible bridging be-
tween data and noise distributions. While architecturally
identical to DiT-XL, the SiT-XL model leverages this inter-
polant approach to facilitate modular experimentation with
interpolant selection and sampling dynamics.

Datasets. We prepared the ImageNet 256 × 256 dataset
by applying center cropping and adaptive resizing to main-
tain the original aspect ratio and minimize distortion. The
images were then normalized to a mean of 0.5 and a stan-
dard deviation of 0.5. To augment the dataset, we applied
random horizontal flipping with a probability of 0.5. To
accelerate training without using Variational Autoencoder
(VAE), we pre-extracted features from the images using a
pre-trained VAE. The images were mapped to their latent
representations, normalized, and the resulting feature arrays
were saved for direct use during training.

Training Details The training process began with obtain-
ing pruned models using the proposed learnable pruning
method as illustrated in Figure 12. Pruning decisions were
made by a joint optimization of pruning and weight updates
through LoRA with a block size. In practice, the block
size is 2 for simplicity and the models were trained for 100
epochs, except for MAR, which was trained for 40 epochs.
To enhance post-pruning performance, the Masked Knowl-
edge Distillation (RepKD) method was employed during
the recovery phase to transfer knowledge from teacher mod-
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Figure 9. 1:2 Pruning Decisions

0 2000 4000 6000 8000 10000
Train iterations

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

La
ye

r I
nd

ex
 in

 D
iT-

XL

Figure 10. 2:4 Pruning Decisions
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Figure 11. 7:14 Pruning Decisions

els to pruned student models. The RepKD approach aligns
the output predictions and intermediate hidden states of the
pruned and teacher models, with further details provided in
the following section. Additionally, as Exponential Mov-
ing Averages (EMA) are updated and used during image
generation, an excessively small learning rate can weaken
EMA’s effect, leading to suboptimal outcomes. To address
this, a progressive learning rate scheduler was implemented
to gradually halve the learning rate throughout training. The
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Figure 12. Learnable depth pruning on a local block
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Figure 13. Masked knowledge distillation with 2:4 blocks.

details of each hyperparameter are provided in Table 6.

2. Visualization of Pruning Decisions
Figures 9, 10 and 11 visualize the dynamics of pruning de-
cisions during training for the 1:2, 2:4, and 7:14 pruning
schemes. Different divisions lead to varying search spaces,
which in turn result in various solutions. For both the 1:2
and 2:4 schemes, good decisions can be learned in only one
epoch, while the 7:14 scheme encounters optimization diffi-
culty. This is due to the

(
14
7

)
=3,432 candidates, which is too

huge and thus cannot be adequately sampled within a single
epoch. Therefore, in practical applications, we use the 1:2
or 2:4 schemes for learnable layer pruning.

3. Details of Masked Knowledge Distillation
Training Loss. This work deploys a standard knowledge
distillation to learn a good student model by mimicking the
pre-trained teacher. The loss function is formalized as:

L = αKD · LKD + αDiff · LDiff + β · LRep (8)

Here, LKD denotes the Mean Squared Error between the
outputs of the student and teacher models. LDiff repre-
sents the original pre-training loss function. Finally, LRep

corresponds to the masked distillation loss applied to the
hidden states, as illustrated in Figure 13, which encourages
alignment between the intermediate representations of the
pruned model and the original model. The corresponding
hyperparameters αKD, αDiff and αRep can be found in Ta-
ble 6.

Hidden State Alignment. The masked distillation loss
LRep is critical for aligning the intermediate representations
of the student and teacher models. During the recovery
phase, each layer of the student model is designed to repli-
cate the output hidden states of a corresponding two-layer
local block from the teacher model. Depth pruning does not
alter the internal dimensions of the layers, enabling direct
alignment without additional projection layers. For mod-
els such as SiTs, where hidden state losses are more pro-
nounced due to their unique interpolant-based architecture,
a smaller coefficient β is applied to LRep to mitigate poten-
tial training instability. The gradual decrease in β through-
out training further reduces the risk of negative impacts on
convergence.

Iterative Pruning and Distillation. Table 7 assesses the
effectiveness of iterative pruning and teacher selection
strategies. To obtain a TinyDiT-D7, we can either directly
prune a DiT-XL with 28 layers or craft a TinyDiT-D14 first
and then iteratively produce the small models. To investi-
gate the impact of teacher choice and the method for obtain-
ing the initial weights of the student model, we derived the
initial weights of TinyDiT-D7 by pruning both a pre-trained
model and a crafted intermediate model. Subsequently, we
used both the trained and crafted models as teachers for
the pruned student models. Across four experimental set-
tings, pruning and distilling using the crafted intermedi-
ate model yielded the best performance. Notably, models
pruned from the crafted model outperformed those pruned
from the pre-trained model regardless of the teacher model
employed in the distillation process. We attribute this su-



Model Optimizer Cosine Sched. Teacher αKD αGT β Grad. Clip Pruning Configs

DiT-D19 AdamW(lr=2e-4, wd=0.0) ηmin = 1e-4 DiT-XL 0.9 0.1 1e-2 → 0 1.0 LoRA-1:2
DiT-D14 AdamW(lr=2e-4, wd=0.0 ηmin = 1e-4 DiT-XL 0.9 0.1 1e-2 → 0 1.0 LoRA-1:2
DiT-D7 AdamW(lr=2e-4, wd=0.0) ηmin = 1e-4 DiT-D14 0.9 0.1 1e-2 → 0 1.0 LoRA-1:2
SiT-D14 AdamW(lr=2e-4, wd=0.0) ηmin = 1e-4 SiT-XL 0.9 0.1 2e-4 → 0 1.0 LoRA-1:2
MAR-D16 AdamW(lr=2e-4, wd=0.0) ηmin = 1e-4 MAR-Large 0.9 0.1 1e-2 → 0 1.0 LoRA-1:2

Table 6. Training details and hyper-parameters for mask training

Teacher Model Pruned From IS FID sFID Prec. Recall

DiT-XL/2 DiT-XL/2 29.46 56.18 26.03 0.43 0.51
DiT-XL/2 TinyDiT-D14 51.96 36.69 28.28 0.53 0.59
TinyDiT-D14 DiT-XL/2 28.30 58.73 29.53 0.41 0.50
TinyDiT-D14 TinyDiT-D14 57.97 32.47 26.05 0.55 0.60

Table 7. TinyDiT-D7 is pruned and distilled with different teacher
models for 10k, sample steps is 64, original weights are used for
sampling rather than EMA.
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Figure 14. FID and training steps.

perior performance to two factors: first, the crafted model’s
structure is better adapted to knowledge distillation since it
was trained using a distillation method; second, the reduced
search space facilitates finding a more favorable initial state
for the student model.

4. Analytical Experiments

Training Strategies Figure 14 illustrates the effective-
ness of standard fine-tuning and knowledge distillation
(KD), where we prune DiT-XL to 14 layers and then ap-
ply various fine-tuning methods. Figure 3 presents the FID
scores across 100K to 500K steps. It is evident that the
standard fine-tuning method allows TinyDiT-D14 to achieve
performance comparable to DiT-L while offering faster in-
ference. Additionally, we confirm the significant effective-
ness of distillation, which enables the model to surpass DiT-
L at just 100K steps and achieve better FID scores than the
500K standard fine-tuned TinyDiT-D14. This is because the
distillation of hidden layers provides stronger supervision.
Further increasing the training steps to 500K leads to sig-
nificantly better results.

Learning Rate IS FID sFID Prec. Recall

lr=2e-4 207.27 3.73 5.04 0.8127 0.5401
lr=1e-4 194.31 4.10 5.01 0.8053 0.5413
lr=5e-5 161.40 6.63 6.69 0.7419 0.5705

Table 8. The effect of Learning rato for TinyDiT-D14 finetuning
w/o knowledge distillation

Learning Rate. We also search on some key hyperparam-
eters such as learning rates in Table 8. We identify the ef-
fectiveness of lr=2e-4 and apply it to all models and exper-
iments.

5. Visulization
Figure 15 and 16 showcase the generated images from
TinySiT-D14 and TinyMAR-D16, which were compressed
from the official checkpoints. These models were trained
using only 7% and 10% of the original pre-training costs,
respectively, and were distilled using the proposed masked
knowledge distillation method. Despite compression, the
models are capable of generating plausible results with only
50% of depth.

6. Limitations
In this work, we explore a learnable depth pruning method
to accelerate diffusion transformer models for conditional
image generation. As Diffusion Transformers have shown
significant advancements in text-to-image generation, it is
valuable to conduct a systematic analysis of the impact of
layer removal within the text-to-image tasks. Additionally,
there exist other interesting depth pruning strategies that
need to be studied, such as more fine-grained pruning strate-
gies that remove attention layers and MLP layers indepen-
dently instead of removing entire transformer blocks. We
leave these investigations for future work.



Figure 15. Generated images from TinySiT-D14

Figure 16. Generated images from TinyMAR-D16
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