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Supplementary Material

This Supplementary Material aims to expand and com-
plement the work’s main body. We structure it as follows:
• Generalization to other PEFT techniques. Appendix A

shows that the benefit of the two-stage design of 2SFS is
not limited to Layer Normalization. In Appendix A.1 we
experiment with LoRA, with particular emphasis on the
relationship with CLIP-LoRA [47]; Appendix A.2 exper-
iments with Prompt Learning techniques: CoOp [52] and
“Independent Vision-Language Prompting” (IVLP);

• Additional visual backbones. Appendix B complements
Sec. 5.1, by reporting results in the base-to-novel setting
also for the ViT-B/32 and ViT-L/14 backbones;

• Robustness to shots availability. Appendix C reports the
results of the main paper, with varying numbers of avail-
able shots. We further experiment with k={4, 8} shots;

• Hyperparameter analysis. Appendix D analyzes the im-
pact of the total number of allowed iterations m;

• Extended preliminary analysis. Appendix E reports
additional evidence for the preliminary observations of
Sec. 3.2, with a focus on identifying the “best” and
“worst” cases. We devote explanations for the slight fail-
ures of Fig. 5 with Oxford Pets [32] and Food-101 [1];

• Limitations are discussed in Appendix F.

A. 2SFS with different PEFT techniques
A.1. LoRA
We expand Sec. 5 reporting results of Tab. 1 and Tab. 2
when LoRA [12] is applied in the first stage. Note that
2SFSLoRA can be seen as a two-stage variant of the recently
introduced CLIP-LoRA strategy, hence we are particularly
interested in understanding the benefits, if any, relative to it.
Implementation details. Following Sec. 5, we perform a
sweep for ω in [0.2, 0.8] with a step size of 0.1, only for the
base-to-novel setting with the ViT-B/16 backbone, validat-
ing on ImageNet. We obtain an optimal value of ω = 0.3,
which aligns with the behavior highlighted by Fig. 2 (i.e.,
LoRA tends to saturate more quickly than LayerNorm). We
transfer it to all other experiments in this Supplementary
Material when 2SFSLoRA is specified. We strictly follow the
CLIP-LoRA recipe for plugging low-rank modules in CLIP.

A.1.1. Base-to-novel generalization
Extended results for the base-to-novel setup are given in
Tab. 3. We observe that, w.r.t. CLIP-LoRA, 2SFSLoRA pro-
vides a notable improvement, especially pronounced in the
Novel metric (+3.02% on average) and, more in general,
it boosts performance on 32 out of 33 {dataset, metric}
combinations. Overall, these results take a step further in

confirming the hypothesis that the two-stage design is ben-
eficial for other PEFT strategies, since 2SFSLoRA exhibits
the 2nd greatest Harmonic Mean on average, only outper-
formed by MMA [42] among published works (excluding
our own alternative 2SFSLayerNorm).

A.1.2. All-to-all adaptation
Tab. 4 reports results for the all-to-all scenario. Following
Sec. 5.2, we experiment with ViT-B/16, ViT-B/32, and ViT-
L/14, inheriting hyperparameters from the base-to-novel
setup. Here, 2SFSLoRA outperforms, on average, all strate-
gies for all backbones, including 2SFSLayerNorm. This fur-
ther aligns with the evidence of Sec. 3.2, where LoRA is
shown to incorporate more helpful knowledge to discrimi-
nate among available categories. Compared to CLIP-LoRA,
2SFSLoRA outperforms it in 27 out of 33 {dataset, back-
bone} combinations, further supporting the benefits of the
two-stage design.

A.2. Prompt Learning
Inspired by “prefix tuning” [23] for Language Models,
Prompt Learning has become arguably the most widely
adopted approach to adapt VLMs [2, 15, 16, 36, 43, 51, 52]
in recent years. We do, hence, explore here if 2SFS also
successfully integrates with Prompt Learning techniques.
Implementation details. To do so, we focus on CoOp [52]
and “Independent Vision-Language Prompting” (IVLP), a
baseline introduced in [16]. We do not conduct any hy-
perparameter tuning for these PEFT methods, but we set
ω=0.3 as used with LoRA, simply leveraging prior knowl-
edge that excessive Prompt Learning severely harms gener-
alization [51]. To exactly compare with both approaches,
we use the same batch size, optimizer setup, and number of
epochs suggested in the original papers.1 When switching
to the second stage of 2SFS, we train the linear classifier
with the same optimizer setup described in the main paper.
Results with the ViT-B/16 backbone and k=16 shots are
given in Tab. 5 (base-to-novel generalization). For all
benchmarks, wrapping prompt learning approaches in the
two-stage design improves the Harmonic Mean between
seen/unseen semantic categories, providing further evi-
dence to support our findings. The gap is particularly ev-
ident with CoOp (+3.56 overall HM), although also IVLP
significantly benefits from this design (+1.23 overall HM).
We also emphasize that the design of 2SFS is computation-
ally friendlier than the original approaches: only the gradi-
ent w.r.t. the classifier is required for the second stage.

1with the only exception of ImageNet, for which we only train for 10
epochs to save computational resources.



Table 3. Experiments in base-to-novel generalization with the ViT-B/16 visual backbone. All methods use k=16 shots per base class.
“CLIP” refers to zero-shot performance with dataset-specific templates, e.g., “a photo of a {}, a type of flower” for Oxford Flowers.
To highlight the benefits of the two-stage design, we report an additional line with the absolute improvement of 2SFSLoRA relative to its
single-stage counterpart CLIP-LoRA [47]. In each table, the best performer is bold, and the second best is underlined.

Average across datasets.

Method Base Novel HM

CLIP [33] 69.34 74.22 71.70
CoOP [52] 82.69 63.22 71.66
CoCoOp [51] 80.47 71.69 75.83
MaPLe [16] 82.28 75.14 78.55
ProGrad [53] 82.48 70.75 76.16
KgCoOp [43] 80.73 73.60 77.00
CLIP-LoRA [47] 85.32 70.63 77.28
MMA [42] 83.20 76.80 79.87

2SFSLayerNorm 85.55 75.48 80.20
2SFSLoRA 85.97 73.65 79.33

+0.65 +3.02 +2.05

ImageNet

Method Base Novel HM

CLIP [33] 72.43 68.14 70.22
CoOp [52] 76.47 67.88 71.92
CoCoOp [51] 75.98 70.43 73.10
MaPLe [16] 76.66 70.54 73.47
ProGrad [53] 77.02 66.66 71.46
KgCoOp [43] 75.83 69.96 72.78
CLIP-LoRA [47] 77.58 68.76 72.91
MMA [42] 77.31 71.00 74.02

2SFSLayerNorm 77.71 70.99 74.20
2SFSLoRA 77.70 71.60 74.53

+0.12 +2.84 +1.62

Caltech101

Method Base Novel HM

CLIP [33] 96.84 94.00 95.40
CoOP [52] 98.00 89.81 93.73
CoCoOp [51] 97.96 93.81 95.84
MaPLe [16] 97.74 94.36 96.02
ProGrad [53] 98.02 93.89 95.91
KgCoOp [43] 97.72 94.39 96.03
CLIP-LoRA [47] 98.19 93.05 95.55
MMA [42] 98.40 94.00 96.15

2SFSLayerNorm 98.71 94.43 96.52
2SFSLoRA 98.45 94.47 96.42

+0.26 +1.42 +0.87

Oxford Flowers

Method Base Novel HM

CLIP [33] 72.08 77.80 74.83
CoOP [52] 97.60 59.67 74.06
CoCoOp [51] 94.87 71.75 81.71
MaPLe [16] 95.92 72.46 82.56
ProGrad [53] 95.54 71.87 82.03
KgCoOp [43] 95.00 74.73 83.65
CLIP-LoRA [47] 97.91 68.61 80.68
MMA [42] 97.77 75.93 85.48

2SFSLayerNorm 98.29 76.17 85.83
2SFSLoRA 98.04 70.95 82.32

+0.13 +2.34 +1.64

Oxford Pets

Method Base Novel HM

CLIP [33] 91.17 97.26 94.12
CoOP [52] 93.67 95.29 94.47
CoCoOp [51] 95.20 97.69 96.43
MaPLe [16] 95.43 97.76 96.58
ProGrad [53] 95.07 97.63 96.33
KgCoOp [43] 94.65 97.76 96.18
CLIP-LoRA [47] 94.36 95.71 95.03
MMA [42] 95.40 98.07 96.72

2SFSLayerNorm 95.32 97.82 96.55
2SFSLoRA 95.50 97.13 96.31

+1.14 +1.42 +1.28

Stanford Cars

Method Base Novel HM

CLIP [33] 63.37 74.89 68.65
CoOP [52] 78.12 60.40 68.13
CoCoOp [51] 70.49 73.59 72.01
MaPLe [16] 72.94 74.00 73.47
ProGrad [53] 77.68 68.63 72.88
KgCoOp [43] 71.76 75.04 73.36
CLIP-LoRA [47] 83.93 65.54 73.60
MMA [42] 78.50 73.10 75.70

2SFSLayerNorm 82.50 74.80 78.46
2SFSLoRA 83.87 70.64 76.69

→0.06 +5.10 +3.09

Food 101

Method Base Novel HM

CLIP [33] 90.10 91.22 90.66
CoOP [52] 88.33 82.26 85.19
CoCoOp [51] 90.70 91.29 90.99
MaPLe [16] 90.71 92.05 91.38
ProGrad [53] 90.37 89.59 89.98
KgCoOp [43] 90.50 91.70 91.09
CLIP-LoRA [47] 86.84 86.67 86.76
MMA [42] 90.13 91.30 90.71

2SFSLayerNorm 89.11 91.34 90.21
2SFSLoRA 88.47 89.96 89.21

+1.61 +3.29 +2.45

FGVC Aircraft

Method Base Novel HM

CLIP [33] 27.19 36.29 31.09
CoOP [52] 40.44 22.30 28.75
CoCoOp [51] 33.41 23.71 27.74
MaPLe [16] 37.44 35.61 36.50
ProGrad [53] 40.54 27.57 32.82
KgCoOp [43] 36.21 33.55 34.83
CLIP-LoRA [47] 50.10 26.03 34.26
MMA [42] 40.57 36.33 38.33

2SFSLayerNorm 47.48 35.51 40.63
2SFSLoRA 51.00 31.37 38.85

+0.90 +5.34 + 4.59

SUN 397

Method Base Novel HM

CLIP [33] 69.36 75.35 72.23
CoOP [52] 80.60 65.89 72.51
CoCoOp [51] 79.74 76.86 78.27
MaPLe [16] 80.82 78.70 79.75
ProGrad [53] 81.26 74.17 77.55
KgCoOp [43] 80.29 76.53 78.36
CLIP-LoRA [47] 81.11 74.53 77.68
MMA [42] 82.27 78.57 80.38

2SFSLayerNorm 82.59 78.91 80.70
2SFSLoRA 82.43 79.05 80.70

+1.32 +4.52 +3.02

DTD

Method Base Novel HM

CLIP [33] 53.24 59.90 56.37
CoOP [52] 79.44 41.18 54.24
CoCoOp [51] 77.01 56.00 64.85
MaPLe [16] 80.36 59.18 68.16
ProGrad [53] 77.35 52.35 62.45
KgCoOp [43] 77.55 54.99 64.35
CLIP-LoRA [47] 83.95 62.84 71.39
MMA [42] 83.20 65.63 73.38

2SFSLayerNorm 84.60 65.01 73.52
2SFSLoRA 84.53 63.53 72.54

+0.58 +0.69 +1.15

EuroSAT

Method Base Novel HM

CLIP [33] 56.48 64.05 60.03
CoOP [52] 92.19 54.74 68.69
CoCoOp [51] 87.49 60.04 71.21
MaPLe [16] 94.07 73.23 82.35
ProGrad [53] 90.11 60.89 72.67
KgCoOp [43] 85.64 64.34 73.48
CLIP-LoRA [47] 97.04 62.50 76.03
MMA [42] 85.46 82.34 83.87

2SFSLayerNorm 96.91 67.09 79.29
2SFSLoRA 97.05 64.59 77.56

+0.01 +2.09 +1.53

UCF101

Method Base Novel HM

CLIP [33] 70.53 77.50 73.85
CoOP [52] 84.69 56.05 67.46
CoCoOp [51] 82.33 73.45 77.64
MaPLe [16] 83.00 78.66 80.77
ProGrad [53] 84.33 74.94 79.35
KgCoOp [43] 82.89 76.67 79.65
CLIP-LoRA [47] 87.52 72.74 79.45
MMA [42] 86.23 80.03 82.20

2SFSLayerNorm 87.85 78.19 82.74
2SFSLoRA 88.59 76.82 82.28

+1.07 +4.08 +2.83



Table 4. All-to-all experiments, where train/test categories coincide, with the ViT-B/16 (top), ViT-B/32 (middle), and ViT-L/14 (bottom)
backbones. All methods use k = 16 shots per class. To highlight the benefits of the two-stage design, we report an additional line with the
absolute improvement of 2SFSLoRA relative to its single-stage counterpart CLIP-LoRA [47]. In each group, the best performer is marked
by bold text; the second best is underlined.

BACKBONE METHOD IMAGENET SUN AIR ESAT CARS FOOD PETS FLWR CAL DTD UCF MEAN

ViT-B/16

Zero-Shot 66.7 62.6 24.7 47.5 65.3 86.1 89.1 71.4 92.9 43.6 66.7 65.1
CoOp [52] (ctx=16) 71.9 74.9 43.2 85.0 82.9 84.2 92.0 96.8 95.8 69.7 83.1 80.0
CoCoOp [51] 71.1 72.6 33.3 73.6 72.3 87.4 93.4 89.1 95.1 63.7 77.2 75.4
TIP-Adapter-F [50] 73.4 76.0 44.6 85.9 82.3 86.8 92.6 96.2 95.7 70.8 83.9 80.7
CLIP-Adapter [10] 69.8 74.2 34.2 71.4 74.0 87.1 92.3 92.9 94.9 59.4 80.2 75.5
PLOT++ [2] 72.6 76.0 46.7 92.0 84.6 87.1 93.6 97.6 96.0 71.4 85.3 82.1
KgCoOp [43] 70.4 73.3 36.5 76.2 74.8 87.2 93.2 93.4 95.2 68.7 81.7 77.3
TaskRes [45] 73.0 76.1 44.9 82.7 83.5 86.9 92.4 97.5 95.8 71.5 84.0 80.8
MaPLe [16] 71.9 74.5 36.8 87.5 74.3 87.4 93.2 94.2 95.4 68.4 81.4 78.6
ProGrad [53] 72.1 75.1 43.0 83.6 82.9 85.8 92.8 96.6 95.9 68.8 82.7 79.9
LP++ [13] 73.0 76.0 42.1 85.5 80.8 87.2 92.6 96.3 95.8 71.9 83.9 80.5
CLIP-LoRA [47] 73.6 76.1 54.7 92.1 86.3 84.2 92.4 98.0 96.4 72.0 86.7 83.0
MMA [42] 73.2 76.6 44.7 85.0 80.2 87.0 93.9 96.8 95.8 72.7 85.0 81.0
2SFS LayerNorm 73.7 77.0 50.0 92.4 85.4 86.1 93.7 97.7 96.4 73.2 86.6 82.9
2SFS LoRA 73.8 76.9 54.6 92.7 86.9 85.7 93.8 98.0 96.4 73.5 87.3 83.6

+0.2 +0.8 -0.1 +0.6 +0.6 +1.5 +1.4 0.0 0.0 +1.5 +0.6 +0.6

ViT-B/32

Zero-Shot 61.9 62.0 19.3 45.1 60.4 80.5 87.5 67.0 91.1 42.6 62.2 61.8
CoOp [52] (ctx=16) 66.8 72.2 32.9 83.3 76.0 78.6 88.7 95.4 94.9 65.3 78.6 75.7
CoCoOp [51] 66.0 69.8 22.6 70.4 64.6 81.9 91.0 82.5 94.3 59.7 75.3 70.7
TIP-Adapter-F [50] 68.4 74.1 34.8 83.4 77.0 81.7 90.4 94.3 95.1 68.0 80.5 77.1
CLIP-Adapter [10] 64.9 71.8 26.7 64.7 68.9 81.9 90.1 88.7 94.8 58.1 76.5 71.6
PLOT++ [2] 67.4 73.4 36.3 91.1 77.4 79.7 89.1 96.3 94.9 67.0 81.5 77.6
KgCoOp [43] 65.4 71.0 23.7 70.1 67.3 81.7 90.8 86.1 94.4 65.1 77.5 72.1
TaskRes [45] 68.2 73.6 37.0 77.7 78.0 81.4 89.4 95.5 95.7 68.3 80.6 76.9
MaPLe [16] 66.7 72.0 28.0 83.3 66.9 82.1 91.7 89.0 95.1 63.4 77.3 74.1
ProGrad [53] 66.9 73.2 33.3 81.0 76.1 80.1 89.3 95.1 95.0 65.8 79.6 75.9
LP++ [13] 68.1 74.0 34.3 82.8 75.2 81.8 90.5 93.9 95.0 67.8 80.1 76.7
CLIP-LoRA [47] 68.4 74.0 44.9 91.8 79.7 78.2 88.8 96.2 95.2 68.2 82.8 78.9
MMA [42] 68.0 74.0 34.0 80.1 73.5 81.4 91.5 94.3 95.6 68.9 81.7 76.7
2SFS LayerNorm 68.4 74.8 40.2 92.1 80.2 80.8 90.3 96.3 95.8 70.4 82.3 79.2
2SFS LoRA 68.6 74.5 44.4 92.2 81.3 80.2 90.0 96.4 95.7 69.6 82.5 79.6

+0.2 +0.5 -0.5 +0.4 +1.6 +2.0 +1.2 +0.2 +0.5 +1.4 -0.3 +0.7

ViT-L/14

Zero-Shot 72.9 67.6 32.6 58.0 76.8 91.0 93.6 79.4 94.9 53.6 74.2 72.2
CoOp [52] (ctx=16) 78.2 77.5 55.2 88.3 89.0 89.8 94.6 99.1 97.2 74.4 87.3 84.6
CoCoOp [51] 77.8 76.7 45.2 79.8 82.7 91.9 95.4 95.3 97.4 71.4 85.2 81.7
TIP-Adapter-F [50] 79.3 79.6 55.8 86.1 88.1 91.6 94.6 98.3 97.5 74.0 87.4 84.8
CLIP-Adapter [10] 76.4 78.0 46.4 75.8 83.8 91.6 94.3 97.3 97.3 71.3 86.1 81.7
PLOT++ [2] 78.6 79.1 44.1 92.2 87.2 90.2 93.6 98.8 97.5 75.0 87.1 83.9
KgCoOp [43] 76.8 76.7 47.5 83.6 83.2 91.7 95.3 96.4 97.4 73.6 86.4 82.6
TaskRes [45] 78.1 76.9 55.0 84.3 87.6 91.5 94.7 97.8 97.3 74.4 86.6 84.0
MaPLe [16] 78.4 78.8 46.3 85.4 83.6 92.0 95.4 97.4 97.2 72.7 86.5 83.1
ProGrad [53] 78.4 78.3 55.6 89.3 88.8 90.8 94.9 98.7 97.5 73.7 87.7 84.9
LP++ [13] 79.3 79.7 54.6 89.3 87.7 91.7 94.9 98.5 97.4 76.1 88.1 85.2
CLIP-LoRA [47] 79.6 79.4 66.2 93.1 90.9 89.9 94.3 99.0 97.3 76.5 89.9 86.9
MMA [42] 79.9 80.2 56.4 76.3 88.0 92.0 95.5 98.4 97.6 75.8 88.0 84.4
2SFS LayerNorm 79.4 80.3 64.1 92.9 90.3 91.1 95.5 99.1 97.5 78.0 89.5 87.1
2SFS LoRA 79.7 80.7 66.5 93.2 91.2 90.8 95.5 99.0 97.5 77.2 90.3 87.4

+0.1 +1.3 +0.3 +0.1 +0.3 +0.9 +1.2 0.0 +0.2 +0.7 +0.4 +0.5

B. Base-to-novel generalization with different
backbones

This Appendix complements Sec. 5.1, where results are
given for the ViT-B/16 backbone mimicking the experimen-
tal setup of [16, 42]. Specifically, here we focus on the

comparison with the best competitor MMA [42] and expand
the experimental evaluation to the ViT-B/32 and ViT-L/14
backbones further.

Implementation Details. To align with Sec. 5.1, we use
layer normalization in the first stage as in the main body of



Table 5. Direct comparison between established prompt learning approaches (CoOp [52] and IVLP [16]) and their behavior when wrapped
in the Two-Stage design of 2SFS. We examine the base-to-novel setting with ViT-B/16 and k=16 shots per class.

Average across datasets.

Method Base Novel HM

CoOp [52] 82.69 63.22 71.66
2SFS CoOp 83.49 68.27 75.12

IVLP 84.21 71.79 77.51
2SFS IVLP 84.53 73.69 78.74

ImageNet

Method Base Novel HM

CoOp [52] 76.47 67.88 71.92
2SFS CoOp 77.44 71.11 74.14

IVLP 77.00 66.50 71.37
2SFS IVLP 75.85 71.05 73.37

Caltech101

Method Base Novel HM

CoOp [52] 98.00 89.81 93.73
2SFS CoOp 98.00 91.99 94.90

IVLP 98.30 93.20 95.68
2SFS IVLP 98.45 94.32 96.34

Oxford Flowers

Method Base Novel HM

CoOp [52] 97.60 59.67 74.06
2SFS CoOp 98.16 69.46 81.35

IVLP 97.97 72.10 83.07
2SFS IVLP 98.1 72.93 83.66

Oxford Pets

Method Base Novel HM

CoOp [52] 93.67 95.29 94.47
2SFS CoOp 93.35 96.96 95.12

IVLP 94.90 97.20 96.04
2SFS IVLP 95.46 97.61 96.53

Stanford Cars

Method Base Novel HM

CoOp [52] 78.12 60.40 68.13
2SFS CoOp 80.15 67.87 73.50

IVLP 79.53 71.47 75.28
2SFS IVLP 81.69 73.5 77.38

Food 101

Method Base Novel HM

CoOp [52] 88.33 82.26 85.19
2SFS CoOp 88.06 88.68 88.37

IVLP 89.37 90.30 89.83
2SFS IVLP 89.45 91.51 90.47

FGVC Aircraft

Method Base Novel HM

CoOp [52] 40.44 22.30 28.75
2SFS CoOp 44.60 29.91 35.81

IVLP 42.60 25.23 31.69
2SFS IVLP 44.78 25.93 32.85

SUN 397

Method Base Novel HM

CoOp [52] 80.60 65.89 72.51
2SFS CoOp 79.16 70.32 74.48

IVLP 81.60 75.50 78.43
2SFS IVLP 81.31 78.27 79.76

DTD

Method Base Novel HM

CoOp [52] 79.44 41.18 54.24
2SFS CoOp 81.40 49.11 61.27

IVLP 82.40 56.20 66.82
2SFS IVLP 83.45 53.66 65.32

EuroSAT

Method Base Novel HM

CoOp [52] 92.19 54.74 68.69
2SFS CoOp 92.94 50.76 65.66

IVLP 96.73 67.83 79.74
2SFS IVLP 95.01 74.51 83.52

UCF101

Method Base Novel HM

CoOp [52] 84.69 56.05 67.46
2SFS CoOp 85.04 64.67 73.47

IVLP 85.93 74.17 79.62
2SFS IVLP 86.28 77.27 81.53

the paper, and make no hyperparameter changes. Results
for these backbones are not available in the official article
of [42], hence we used the open-source implementation of
the authors with no modifications (the repository already
integrates with different CLIP variants) as done for the all-
to-all experiments of Sec. 5.2.
Results are given in Tab. 6 for ViT-B/32 and in Tab. 7 for
ViT-L/14. For both backbones, 2SFS largely outperforms
MMA on average, exhibiting larger improvements than
those emerging with the ViT-B/16 visual encoder (+1.70%
and +1.83%, respectively), confirming that the effective-
ness of 2SFS does not depend on a specific backbone.

C. Varying Shots
In Sec. 5 of the main body, results are given for the most
popular FSA scenario in which k=16 shots are available
per category. Here, we test the robustness of 2SFS in ex-
treme data scarcity, working with both k=4 and k=8 shots
for both all-to-all and base-to-novel cases. The results are
discussed below.
Base-to-novel generalization. In line with Appendix B, we
focus on the comparison with MMA [42]. We experiment
with all backbones, and report results in Tab. 11 and Tab. 12

for ViT-B/16, Tab. 13 and Tab. 14 for ViT-B/32, and Tab. 15
and Tab. 16 for ViT-L/14, with 4 and 8 shots, respectively.2

On average, 2SFS outperforms MMA for all backbones
and all shots setups. Importantly, we observe that the per-
formance gap increases as the shots decrease, up to large
gaps such as +3.98% and +4.45% HM with ViT-B/16 and
ViT-B/32 using 4 shots. We speculate this behavior stems
from the reduced amount of learnable parameters of 2SFS,
which better accommodates a smaller number of examples.
To ground the discussion in some numbers: summing up
LayerNorm instances totals around 61k parameters for ViT-
B backbones, while MMA introduces 674k new parameters.
All-to-all adaptation. Results for the all-to-all setup are
given in Tab. 9 and Tab. 10 for 4 and 8 shots. We include
numbers from all 11 competitors of Sec. 5.2, following the
reported results of [47], and reproducing when unavailable.
Also in this case, 2SFS outperforms all competitors on av-
erage for all {backbones, shots} combinations.

In summary, looking at both scenarios, 2SFS appears to
be a stronger approach w.r.t. to the comparison suite, regard-

2Please note that results for CoOp, CoCoOp, ProGrad, and KgCoOp
with the ViT-B/16 backbone and k→{4, 8} are given in the supplementary
material of [43], which we omit to avoid excessively dense tables. 2SFS
largely outperforms all methods with available results.



Table 6. Experiments in base-to-novel generalization, with the ViT-B/32 visual backbone and k = 16 shots per base category, focusing on
the comparison with MultiModal Adapter (MMA) [42]. “CLIP” refers to zero-shot performance with dataset-specific templates, e.g., “a
photo of a {}, a type of flower” for Oxford Flowers. Formatting follows Tab. 1.

Average across datasets.

Method Base Novel HM

CLIP [33] 67.27 71.68 69.41
MMA [42] 78.69 71.04 74.67

2SFS 82.32 71.23 76.37

ImageNet

Method Base Novel HM

CLIP [33] 67.49 64.06 65.73
MMA [42] 72.53 65.77 68.98

2SFS 72.52 66.62 69.44

Caltech101

Method Base Novel HM

CLIP [33] 94.06 94.00 94.03
MMA [42] 97.20 92.63 94.86

2SFS 97.83 93.30 95.51

Oxford Flowers

Method Base Novel HM

CLIP [33] 72.36 73.69 73.02
MMA [42] 95.50 71.57 81.82

2SFS 96.64 70.02 81.20

Oxford Pets

Method Base Novel HM

CLIP [33] 90.64 96.87 93.65
MMA [42] 93.77 96.30 95.02

2SFS 93.18 95.56 94.35

Stanford Cars

Method Base Novel HM

CLIP [33] 60.72 69.74 64.92
MMA [42] 73.73 69.27 71.43

2SFS 78.21 70.30 74.04

Food 101

Method Base Novel HM

CLIP [33] 85.30 86.89 86.09
MMA [42] 85.77 87.13 86.44

2SFS 84.75 87.37 86.04

FGVC Aircraft

Method Base Novel HM

CLIP [33] 21.25 29.27 24.62
MMA [42] 31.77 28.73 30.17

2SFS 39.12 30.85 34.50

SUN 397

Method Base Novel HM

CLIP [33] 69.80 73.01 71.37
MMA [42] 80.27 76.57 78.38

2SFS 81.11 78.02 79.53

DTD

Method Base Novel HM

CLIP [33] 54.17 58.21 56.12
MMA [42] 79.50 57.00 66.40

2SFS 80.09 54.63 64.95

EuroSAT

Method Base Novel HM

CLIP [33] 55.14 69.77 61.60
MMA [42] 71.83 62.97 67.11

2SFS 96.80 62.68 76.09

UCF101

Method Base Novel HM

CLIP [33] 69.08 72.96 70.97
MMA [42] 83.77 73.47 78.28

2SFS 85.25 74.15 79.31

Table 7. Experiments in base-to-novel generalization, with the ViT-L/14 visual backbone and k = 16 shots per base category, focusing on
the comparison with MultiModal Adapter (MMA) [42]. “CLIP” refers to zero-shot performance with dataset-specific templates, e.g., “a
photo of a {}, a type of flower” for Oxford Flowers. Formatting follows Tab. 1.

Average across datasets.

Method Base Novel HM

CLIP [33] 76.18 80.08 78.08
MMA [42] 85.70 79.06 82.25

2SFS 89.05 79.64 84.08

ImageNet

Method Base Novel HM

CLIP [33] 79.18 74.04 76.53
MMA [42] 83.17 76.73 79.82

2SFS 83.11 76.98 79.93

Caltech101

Method Base Novel HM

CLIP [33] 95.61 95.41 95.51
MMA [42] 98.60 95.97 97.27

2SFS 98.82 96.69 97.74

Oxford Flowers

Method Base Novel HM
CLIP [33] 80.34 83.05 81.67
MMA [42] 99.00 80.20 88.61

2SFS 98.99 80.73 88.93

Oxford Pets

Method Base Novel HM

CLIP [33] 93.78 96.53 95.14
MMA [42] 96.23 98.70 97.45

2SFS 96.74 98.64 97.68

Stanford Cars

Method Base Novel HM

CLIP [33] 74.56 84.65 79.29
MMA [42] 85.27 83.80 84.53

2SFS 87.46 84.56 85.99

Food 101

Method Base Novel HM

CLIP [33] 93.75 94.82 94.28
MMA [42] 94.23 95.10 94.66

2SFS 93.59 94.93 94.26

FGVC Aircraft

Method Base Novel HM

CLIP [33] 37.52 44.21 40.59
MMA [42] 50.00 42.47 45.93

2SFS 59.76 43.59 50.41

SUN 397

Method Base Novel HM

CLIP [33] 73.23 77.71 75.40
MMA [42] 85.03 81.77 83.37

2SFS 85.57 82.24 83.87

DTD

Method Base Novel HM

CLIP [33] 59.14 67.87 63.21
MMA [42] 85.23 70.77 77.33

2SFS 87.35 70.73 78.17

EuroSAT

Method Base Novel HM

CLIP [33] 70.93 82.90 76.45
MMA [42] 77.33 62.77 69.29

2SFS 98.41 64.69 78.06

UCF101

Method Base Novel HM

CLIP [33] 79.94 79.66 79.80
MMA [42] 88.60 81.37 84.83

2SFS 89.80 82.24 85.85



M Base Novel HM
M = 100 77.55 70.50 73.86
M = 300 77.71 70.99 74.20
M = 500 77.35 71.16 74.12

Table 8. Sweep on M → {100, 300, 500} when ω = 0.6 on the
ImageNet validation set and CLIP ViT-B/16.

less of how many shots are available. Importantly, it does
so by (i) not employing any external source of knowledge
(such as LLMs to generate descriptions or Image Gener-
ators to craft new examples [4]), (ii) avoiding the usage of
well-engineered templates for each dataset, which are likely
to be unavailable in practice, and (iii) only leveraging a sin-
gle template “a photo of a {}”, in contrast to an ensemble
of templates [17]. We speculate, however, that such orthog-
onal techniques may further improve 2SFS.

D. Total gradient steps allowed
This Appendix briefly analyzes the impact of increasing or
reducing the total number of iterations m. For simplicity,
we stick to the ViT-B/16 backbone and the ImageNet val-
idation set. Recall that in Sec. 5, the total number of it-
erations is defined as m = M → k, where, in our case,
M = 300 and k is the number of shots. M was chosen so
to match the number of gradient steps performed on Ima-
geNet with ↑ 10 epochs (constant mini-batch size of 32, 16
shots for all categories). In essence, this means that the bud-
get is expressed in terms of a constant number of gradient
steps rather than epochs, following [47]. Here, we analyze
the impact of varying M when ω=0.6 as in Sec. 5. Re-
sults are given in Tab. 8. We observe that M = 100 likely
allocates insufficient compute for learning a good feature
extractor in the first stage (lowest “Novel” metric). In con-
trast, M = 300 and M = 500 exhibit more comparable
behaviors, which leads to choosing M = 300 considering
the reduced overall runtime.

E. Extended preliminary analysis
Here, we aim to enrich the preliminary analysis conducted
in Sec. 3.2. Recall that Sec. 3.2 introduces the natural emer-
gence of two distinct stages when training CLIP ViT-B/16
with three different PEFT techniques in the low-data regime
of FSA, and does so by visualizing the learning dynamics
on DTD [3] and FGVC Aircraft [29]. First, we show that
such a dynamic is not limited to those datasets. Second,
we identify a saturating behavior of Layer Normalization,
which we link to the data-to-parameter ratio. Finally, we
focus on Oxford Pets [32] and Food-101 [1], which were
the only datasets (out of 11) leading to a slight performance
degradation during the ablation study of Sec. 5.3.

Consistent behaviors. Fig. 6 shows that analogous and
consistent patterns emerge also for UCF-101 [37] and Eu-
roSAT [11] for all the PEFT techniques of our study. Partic-
ularly with EuroSAT, this behavior emerges to the extreme,
with sharp breakpoints. In line with Sec. 3.2, BitFit tends to
“break” earlier than both LoRA and LayerNorm.
Saturating behaviors. Fig. 7 shows consistent breakpoints
for LoRA and BitFit further, displaying SUN397 [40] and
ImageNet [34]. These two datasets have a trait in com-
mon w.r.t. the rest of the evaluation suite: a much larger
label space. In FSA, where samples are constant per cat-
egory, this inevitably entails a larger amount of examples.
In parallel, LayerNorm instances total a reduced number of
parameters w.r.t. to LoRA and BitFit (61k, 184k, 125k, re-
spectively). We speculate that the more balanced data-to-
parameter ratio of LayerNorm for these larger datasets has
a regularizing effect, which avoids breaking and reaches a
behavior similar to saturation, where the novel class accu-
racy remains constant.
Unexpected behaviors. Fig. 8 depicts the learning dynam-
ics on Food-101 [1] and Oxford Pets [32]. These were the
only two datasets where including a second stage did not ap-
pear beneficial in Fig. 5 of the main body. From the dynam-
ics, the reason is evident: base and novel accuracy break
together. For both datasets, base accuracy either decreases
or saturates right after the breakpoint (pink line), implying
overfitting since training data are available for base cate-
gories only. This suggests that ω and M should be tailored
to these datasets, to avoid training a classifier on overfitted
features. However, we consider it fairer to transfer hyper-
parameters across datasets since, in practice, no annotated
data except for the shots should be available in FSA, which
raises concerns about the feasibility of tuning hyperparam-
eters per dataset.

F. Limitations
In this work, we build on the finding that PEFT techniques
learn good task-level features to design a simple and effec-
tive strategy for few-shot adaptation. For completeness, we
identify and report three limitations of our work, which we
hope can help construct future works.
Evaluating outside of our suite. While we successfully ex-
periment with a variety of backbones (i.e., ViT-B/16, ViT-
B/32, ViT-L/14), datasets (i.e., 11 different benchmarks),
settings (i.e., base-to-novel, all-to-all), PEFT techniques
(i.e., LayerNorm tuning and LoRA), and data availability
conditions (i.e., 4, 8, and 16 shots), as per most empirical
observations, our results might not extend when tested with
other (or future) PEFT strategies and on different bench-
marks or additional models.
Expanding the variety of tasks. Our work focuses on
downstream classification, following the established and re-
cent field literature [2, 10, 16, 42, 43, 45, 47, 50–53]. How-



Table 9. All-to-all experiments with k = 4 shots, using ViT-B/16, ViT-B/32, and ViT-L/14. Formatting follows Tab. 2.

BACKBONE METHOD IMAGENET SUN AIR ESAT CARS FOOD PETS FLWR CAL DTD UCF MEAN

ViT-B/16

Zero-Shot [33] 66.7 62.6 24.7 47.5 65.3 86.1 89.1 71.4 92.9 43.6 66.7 65.1
CoOp [52] (ctx=16) 68.8 69.7 30.9 69.7 74.4 84.5 92.5 92.2 94.5 59.5 77.6 74.0
CoCoOp [51] 70.6 70.4 30.6 61.7 69.5 86.3 92.7 81.5 94.8 55.7 75.3 71.7
TIP-Adapter-F [50] 70.7 70.8 35.7 76.8 74.1 86.5 91.9 92.1 94.8 59.8 78.1 75.6
CLIP-Adapter [10] 68.6 68.0 27.9 51.2 67.5 86.5 90.8 73.1 94.0 46.1 70.6 67.7
PLOT++ [2] 70.4 71.7 35.3 83.2 76.3 86.5 92.6 92.9 95.1 62.4 79.8 76.9
KgCoOp [43] 69.9 71.5 32.2 71.8 69.5 86.9 92.6 87.0 95.0 58.7 77.6 73.9
TaskRes [45] 71.0 72.7 33.4 74.2 76.0 86.0 91.9 85.0 95.0 60.1 76.2 74.7
MaPLe [16] 70.6 71.4 30.1 69.9 70.1 86.7 93.3 84.9 95.0 59.0 77.1 73.5
ProGrad [53] 70.2 71.7 34.1 69.6 75.0 85.4 92.1 91.1 94.4 59.7 77.9 74.7
LP++ [13] 70.8 73.2 34.0 73.6 74.0 85.9 90.9 93.0 95.1 62.4 79.2 75.6
CLIP-LoRA [47] 71.4 72.8 37.9 84.9 77.4 82.7 91.0 93.7 95.2 63.8 81.1 77.4
MMA [42] 70.5 72.9 35.0 42.4 73.3 86.0 92.9 91.3 94.5 60.1 79.0 72.5
2SFS 71.1 73.7 39.8 85.5 77.5 85.9 92.6 94.0 95.4 66.0 82.0 78.5

ViT-B/32

Zero-Shot [33] 61.9 62.0 19.3 45.1 60.4 80.5 87.5 67.0 91.1 42.6 62.2 61.8
CoOp [52] (ctx=16) 63.2 67.1 24.0 68.7 66.2 75.6 88.8 87.9 93.0 55.3 75.0 69.5
CoCoOp [51] 65.2 67.8 17.3 58.5 62.0 81.1 89.8 74.6 93.2 52.3 71.6 66.7
TIP-Adapter-F [50] 65.8 68.3 28.8 71.5 67.6 80.9 88.6 88.9 94.6 58.0 75.1 71.6
CLIP-Adapter [10] 63.7 65.6 21.3 49.9 62.2 81.3 88.4 68.3 92.0 47.2 67.3 64.3
PLOT++ [2] 64.6 69.2 26.2 81.6 68.5 77.8 89.1 90.2 93.9 57.2 75.6 72.2
KgCoOp [43] 64.7 69.2 22.6 64.9 63.2 81.2 89.5 76.8 93.8 55.1 71.6 68.4
TaskRes [45] 66.1 66.7 23.1 70.7 66.7 76.7 86.7 79.0 90.6 57.0 68.2 68.3
MaPLe [16] 65.6 69.4 23.4 64.7 62.2 81.4 90.5 78.1 94.0 55.0 70.9 68.7
ProGrad [53] 65.2 69.6 24.8 63.7 66.4 79.2 89.4 87.5 93.2 55.9 73.4 69.8
LP++ [13] 66.1 70.5 26.0 73.5 67.3 80.0 88.9 90.2 94.0 59.3 74.8 71.9
CLIP-LoRA [47] 66.5 70.3 27.7 85.6 68.3 75.6 86.3 90.1 94.3 60.3 76.5 72.9
MMA [42] 64.7 70.4 25.6 36.0 66.3 80.5 90.7 86.1 94.0 55.6 74.6 67.7
2SFS 66.0 71.4 30.6 82.6 70.4 80.2 89.4 91.0 95.1 63.1 77.4 74.3

ViT-L/14

Zero-Shot [33] 72.9 67.6 32.6 58.0 76.8 91.0 93.6 79.4 94.9 53.6 74.2 72.2
CoOp [52] (ctx=16) 74.9 73.1 43.6 75.9 83.3 88.7 94.6 95.9 96.5 63.9 82.8 79.4
CoCoOp [51] 77.0 74.7 41.0 74.7 79.7 91.3 94.9 89.8 97.1 64.9 82.6 78.9
TIP-Adapter-F [50] 77.1 74.1 47.4 81.4 82.3 91.2 94.0 95.5 96.5 64.4 83.9 80.7
CLIP-Adapter [10] 75.2 72.1 35.8 61.3 78.8 91.2 93.7 81.7 95.6 57.9 77.9 74.7
PLOT++ [50] 76.4 75.2 43.2 81.3 82.6 87.7 94.2 95.9 96.9 66.8 83.8 80.4
KgCoOp [43] 76.4 75.2 40.6 79.5 80.0 91.5 94.4 90.2 96.9 66.3 83.4 79.5
TaskRes [45] 77.1 74.9 42.5 76.6 83.6 90.7 94.4 90.3 96.5 65.4 80.1 79.3
MaPLe [16] 77.2 76.0 40.4 74.6 80.3 91.5 95.0 93.2 97.0 64.5 82.8 79.3
ProGrad [53] 76.5 75.0 44.6 79.3 83.8 90.6 94.8 95.6 96.8 66.3 83.6 80.6
LP++ [13] 77.4 76.9 45.9 83.1 82.7 91.0 93.8 97.2 97.4 68.3 85.3 81.7
CLIP-LoRA [47] 77.9 76.7 48.9 86.4 85.2 89.6 93.9 97.4 97.2 70.4 86.4 82.7
MMA [42] 77.7 77.1 45.2 55.3 83.3 91.4 94.3 95.1 97.0 63.8 83.2 78.5
2SFS 77.3 77.5 52.0 86.7 84.9 90.9 95.0 97.5 97.4 71.1 86.9 83.4

ever, an additional intriguing direction to pursue is repre-
sented by tasks focusing on different challenges (e.g., the
spatial ones of semantic segmentation, and the temporal one
of action recognition), which may require different adapta-
tion strategies.

Validation-free stopping criterion. Finally, a core hyper-
parameter of our approach is ω, regulating when to stop
with the feature extractor training (i.e., the first stage) and
start with the second one (i.e., classifier learning). As we
have shown empirically with Oxford Pets [32] and Food-

101 [1] a single ω, tuned on a given dataset, may not be ideal
for others. To this aim, future works may integrate (or inves-
tigate) stopping criteria not requiring a validation set [28],
to dynamically understand or approximate, in an unsuper-
vised manner, when to switch between the two stages.



Table 10. All-to-all experiments with k = 8 shots, using ViT-B/16, ViT-B/32, and ViT-L/14. Formatting follows Tab. 2.

BACKBONE METHOD IMAGENET SUN AIR ESAT CARS FOOD PETS FLWR CAL DTD UCF MEAN

ViT-B/16

Zero-Shot [33] 66.7 62.6 24.7 47.5 65.3 86.1 89.1 71.4 92.9 43.6 66.7 65.1
CoOp [52] (ctx=16) 70.6 71.9 38.5 77.1 79.0 82.7 91.3 94.9 94.5 64.8 80.0 76.8
CoCoOp [51] 70.8 71.5 32.4 69.1 70.4 87.0 93.3 86.3 94.9 60.1 75.9 73.8
TIP-Adapter-F [50] 71.7 73.5 39.5 81.3 78.3 86.9 91.8 94.3 95.2 66.7 82.0 78.3
CLIP-Adapter [10] 69.1 71.7 30.5 61.6 70.7 86.9 91.9 83.3 94.5 50.5 76.2 71.5
PLOT++ [2] 71.3 73.9 41.4 88.4 81.3 86.6 93.0 95.4 95.5 66.5 82.8 79.6
KgCoOp [43] 70.2 72.6 34.8 73.9 72.8 87.0 93.0 91.5 95.1 65.6 80.0 76.0
TaskRes [45] 72.3 74.6 40.3 77.5 79.6 86.4 92.0 96.0 95.3 66.7 81.6 78.4
MaPLe [16] 71.3 73.2 33.8 82.8 71.3 87.2 93.1 90.5 95.1 63.0 79.5 76.4
ProGrad [53] 71.3 73.0 37.7 77.8 78.7 86.1 92.2 95.0 94.8 63.9 80.5 77.4
LP++ [13] 72.1 75.1 39.0 78.2 76.4 86.8 91.8 95.2 95.5 67.7 81.9 78.2
CLIP-LoRA [47] 72.3 74.7 45.7 89.7 82.1 83.1 91.7 96.3 95.6 67.5 84.1 80.3
MMA [42] 71.9 74.7 38.9 69.7 76.8 86.4 92.9 94.6 95.6 66.9 82.9 77.4
2SFS 72.5 75.5 44.3 89.1 81.9 86.1 92.9 95.9 96.1 68.7 84.4 80.7

ViT-B/32

Zero-Shot [33] 61.9 62.0 19.3 45.1 60.4 80.5 87.5 67.0 91.1 42.6 62.2 61.8
CoOp [52] (ctx=16) 65.5 69.2 29.1 76.4 71.3 76.3 87.4 92.7 93.8 61.7 76.5 72.7
CoCoOp [51] 65.8 68.9 20.3 58.1 63.4 81.6 90.1 77.3 93.8 57.4 72.4 68.1
TIP-Adapter-F [50] 66.8 71.2 32.1 75.0 72.6 81.3 89.8 90.4 94.5 63.6 78.0 74.1
CLIP-Adapter [10] 64.2 69.3 23.5 55.2 65.4 81.5 89.3 78.0 93.9 50.8 73.0 67.6
PLOT++ [2] 66.2 71.0 31.7 87.1 73.5 78.2 88.4 93.8 94.4 62.9 79.1 75.1
KgCoOp [43] 65.1 69.5 24.7 66.2 65.0 81.7 90.3 83.1 94.5 61.1 74.7 70.5
TaskRes [45] 67.4 71.9 31.9 74.9 73.8 80.6 89.1 93.5 94.8 64.5 78.4 74.6
MaPLe [16] 66.3 70.3 25.4 79.0 63.7 81.9 90.9 81.1 94.4 59.8 75.0 71.6
ProGrad [53] 66.1 71.1 29.0 73.5 71.8 80.0 89.1 92.1 94.2 62.3 75.7 73.2
LP++ [13] 67.1 72.2 30.3 78.8 71.2 81.5 89.3 92.4 94.6 64.2 78.4 74.5
CLIP-LoRA [47] 67.2 72.1 36.1 88.8 74.4 76.7 87.7 92.4 94.8 63.7 80.1 75.8
MMA [42] 66.7 72.2 29.6 56.2 70.4 81.0 91.0 90.7 94.6 64.4 78.7 72.3
2SFS 67.2 73.1 35.2 88.7 75.4 80.4 90.4 93.4 95.4 65.9 80.2 76.8

ViT-L/14

Zero-Shot [33] 72.9 67.6 32.6 58.0 76.8 91.0 93.6 79.4 94.9 53.6 74.2 72.2
CoOp [52] (ctx=16) 76.8 75.0 51.2 82.8 86.4 88.6 94.0 98.0 96.7 69.4 85.1 82.2
CoCoOp [51] 77.4 75.6 43.3 77.0 81.4 91.6 95.3 93.0 97.0 67.9 84.5 80.4
TIP-Adapter-F [50] 77.8 76.7 50.4 84.9 85.9 91.4 94.1 97.3 96.9 71.2 86.2 83.0
CLIP-Adapter [10] 75.7 75.9 40.7 67.9 81.6 91.4 94.3 92.3 96.8 63.8 82.8 78.5
PLOT++ [2] 77.8 77.0 43.2 87.0 84.6 89.6 93.3 96.3 96.8 69.5 84.8 81.8
KgCoOp [43] 76.7 76.2 45.9 82.1 82.3 91.6 95.1 95.2 97.3 70.8 85.7 81.7
TaskRes [45] 77.9 76.0 51.1 81.1 85.7 91.1 94.5 96.7 96.9 69.4 85.6 82.4
MaPLe [16] 78.0 77.2 42.9 80.7 81.8 90.1 95.0 95.8 96.8 69.5 85.1 81.2
ProGrad [53] 77.7 76.1 49.9 83.6 86.2 90.8 95.1 97.8 96.7 69.9 85.4 82.7
LP++ [13] 78.4 78.4 50.8 85.0 85.2 91.4 94.4 97.9 97.6 72.1 86.0 83.4
CLIP-LoRA [47] 78.5 78.0 57.5 90.0 88.7 89.7 94.2 98.0 97.0 72.2 88.3 84.7
MMA [42] 78.6 78.8 50.9 61.4 85.8 91.5 95.1 97.7 97.1 71.9 86.2 81.4
2SFS 78.6 79.2 57.6 89.8 88.2 91.4 95.2 98.3 97.2 74.2 88.4 85.3
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Figure 6. Breakpoints consistently emerging for UCF-101 [37] and EuroSAT [11], regardless of the PEFT technique used in our study.
The pattern appears particularly evident with EuroSAT (bottom).
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Figure 7. Breakpoint further confirmed for both LoRA [12] and BitFit [46] on ImageNet [34] and SUN397 [40]. For Layer Normalization,
we speculate that the more balanced data-to-parameter ratio, given the larger number of examples in these datasets and the smaller number
of parameters of LayerNorm, has a regularizing effect, which avoids breaking and leads to saturation.
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Figure 8. Understanding the failure cases of Sec. 5.3 through the lens of breakpoints. On Oxford Pets [32] and Food-101 [1], base accuracy
overfits or saturates right after degradation on novel accuracy, which leads the second stage of 2SFS to train a classifier on disrupted base
features since ω is fixed. These visualizations suggest that ω and M should be tuned explicitly for these benchmarks, which we avoid to
strive for an evaluation as realistic as possible.

Table 11. Experiments in base-to-novel generalization with the ViT-B/16 visual backbone k=4 shots per base class.

Average across datasets.

Method Base Novel HM

CLIP [33] 69.34 74.22 71.70
MMA [42] 80.13 78.57 74.90

2SFS 84.64 78.53 78.88

ImageNet

Method Base Novel HM

CLIP [33] 72.43 68.14 70.22
MMA [42] 75.37 70.10 72.64

2SFS 75.68 70.27 72.87

Caltech101

Method Base Novel HM

CLIP [33] 96.84 94.00 93.73
MMA [42] 97.33 94.57 95.93

2SFS 98.13 94.21 96.13

Oxford Flowers

Method Base Novel HM

CLIP [33] 72.08 77.80 74.83
MMA [42] 91.07 75.07 82.30

2SFS 94.94 76.26 84.58

Oxford Pets

Method Base Novel HM

CLIP [33] 91.17 97.26 94.12
MMA [42] 91.30 97.07 94.10

2SFS 94.58 97.48 96.01

Stanford Cars

Method Base Novel HM

CLIP [33] 63.37 74.89 68.65
MMA [42] 71.30 74.07 72.66

2SFS 74.45 75.98 75.21

Food101

Method Base Novel HM

CLIP [33] 90.10 91.22 90.66
MMA [42] 89.77 91.10 90.43

2SFS 88.91 91.40 90.14

FGVC Aircraft

Method Base Novel HM

CLIP [33] 27.19 36.29 31.09
MMA [42] 31.97 34.03 32.97

2SFS 39.36 35.67 37.42

SUN397

Method Base Novel HM

CLIP [33] 69.36 75.35 72.23
MMA [42] 79.37 78.53 78.95

2SFS 80.23 78.46 79.33

DTD

Method Base Novel HM

CLIP [33] 53.24 59.90 56.37
MMA [42] 63.50 63.57 63.53

2SFS 76.81 65.02 70.42

EuroSAT

Method Base Novel HM

CLIP [33] 56.48 64.05 60.03
MMA [42] 50.13 69.93 58.40

2SFS 91.29 75.10 82.41

UCF101

Method Base Novel HM

CLIP [33] 70.53 77.50 73.85
MMA [42] 80.13 78.57 79.34

2SFS 84.64 78.53 81.47



Table 12. Experiments in base-to-novel generalization with the ViT-B/16 visual backbone k=8 shots per base class.

Average across datasets.

Method Base Novel HM

CLIP [33] 69.34 74.22 71.70
MMA [42] 84.80 78.10 76.68

2SFS 86.37 78.58 79.74

ImageNet

Method Base Novel HM

CLIP [33] 72.43 68.14 70.22
MMA [42] 76.43 70.07 73.11

2SFS 76.97 70.67 73.69

Caltech101

Method Base Novel HM

CLIP [33] 96.84 94.00 93.73
MMA [42] 97.77 93.87 95.78

2SFS 98.13 94.18 96.11

Oxford Flowers

Method Base Novel HM

CLIP [33] 72.08 77.80 74.83
MMA [42] 95.37 75.43 84.24

2SFS 96.68 76.36 85.33

Oxford Pets

Method Base Novel HM

CLIP [33] 91.17 97.26 94.12
MMA [42] 94.90 97.50 96.18

2SFS 94.95 97.80 96.35

Stanford Cars

Method Base Novel HM

CLIP [33] 63.37 74.89 68.65
MMA [42] 75.00 74.80 74.90

2SFS 78.99 75.45 77.18

Food101

Method Base Novel HM

CLIP [33] 90.10 91.22 90.66
MMA [42] 89.53 91.07 90.29

2SFS 89.02 91.36 90.17

FGVC Aircraft

Method Base Novel HM

CLIP [33] 27.19 36.29 31.09
MMA [42] 37.53 34.57 35.99

2SFS 42.96 36.39 39.40

SUN397

Method Base Novel HM

CLIP [33] 69.36 75.35 72.23
MMA [42] 80.73 78.33 79.51

2SFS 81.25 78.76 79.99

DTD

Method Base Novel HM

CLIP [33] 53.24 59.90 56.37
MMA [42] 77.07 64.47 70.21

2SFS 80.17 64.45 71.46

EuroSAT

Method Base Novel HM

CLIP [33] 56.48 64.05 60.03
MMA [42] 50.30 69.97 58.53

2SFS 93.33 75.09 83.23

UCF101

Method Base Novel HM

CLIP [33] 70.53 77.50 73.85
MMA [42] 84.80 78.10 81.31

2SFS 86.37 78.58 82.29

Table 13. Experiments in base-to-novel generalization with the ViT-B/32 visual backbone k=4 shots per base class.

Average across datasets.

Method Base Novel HM

CLIP [33] 67.27 71.68 69.41
MMA [42] 77.20 74.43 70.55

2SFS 82.04 74.44 75.00

ImageNet

Method Base Novel HM

CLIP [33] 67.49 64.06 65.73
MMA [42] 69.77 65.63 67.64

2SFS 70.51 65.91 68.13

Caltech101

Method Base Novel HM

CLIP [33] 94.06 94.00 94.03
MMA [42] 96.90 93.03 94.93

2SFS 97.16 93.52 95.31

Oxford Flowers

Method Base Novel HM

CLIP [33] 72.36 73.69 73.02
MMA [42] 87.03 70.83 78.10

2SFS 93.99 71.70 81.35

Oxford Pets

Method Base Novel HM

CLIP [33] 90.64 96.87 93.65
MMA [42] 88.43 96.33 92.21

2SFS 92.50 95.25 93.86

Stanford Cars

Method Base Novel HM

CLIP [33] 60.72 69.74 64.92
MMA [42] 66.23 69.17 67.67

2SFS 69.22 70.84 70.02

Food101

Method Base Novel HM

CLIP [33] 85.30 86.89 86.09
MMA [42] 85.03 86.40 85.71

2SFS 84.04 86.95 85.47

FGVC Aircraft

Method Base Novel HM

CLIP [33] 21.25 29.27 24.62
MMA [42] 25.27 27.90 26.52

2SFS 33.11 30.23 31.61

SUN397

Method Base Novel HM

CLIP [33] 69.80 73.01 71.37
MMA [42] 77.37 76.40 76.88

2SFS 78.23 76.34 77.27

DTD

Method Base Novel HM

CLIP [33] 54.17 58.21 56.12
MMA [42] 62.13 57.70 59.83

2SFS 74.23 56.76 64.33

EuroSAT

Method Base Novel HM

CLIP [33] 55.14 69.77 61.60
MMA [42] 41.73 57.17 48.24

2SFS 87.91 68.35 76.91

UCF101

Method Base Novel HM

CLIP [33] 69.08 72.96 70.97
MMA [42] 77.20 74.43 75.79

2SFS 82.04 74.44 78.05



Table 14. Experiments in base-to-novel generalization with the ViT-B/32 visual backbone k=8 shots per base class.

Average across datasets.

Method Base Novel HM

CLIP [33] 67.27 71.68 69.41
MMA [42] 81.67 73.83 72.06

2SFS 84.21 74.62 75.88

ImageNet

Method Base Novel HM

CLIP [33] 67.49 64.06 65.73
MMA [42] 71.03 65.17 67.97

2SFS 71.39 66.24 68.72

Caltech101

Method Base Novel HM

CLIP [33] 94.06 94.00 94.03
MMA [42] 97.13 92.57 94.80

2SFS 97.61 93.56 95.54

Oxford Flowers

Method Base Novel HM

CLIP [33] 72.36 73.69 73.02
MMA [42] 92.97 71.63 80.92

2SFS 95.79 71.35 81.78

Oxford Pets

Method Base Novel HM

CLIP [33] 90.64 96.87 93.65
MMA [42] 93.57 95.57 94.56

2SFS 92.79 95.58 94.16

Stanford Cars

Method Base Novel HM

CLIP [33] 60.72 69.74 64.92
MMA [42] 69.83 69.80 69.81

2SFS 73.48 70.71 72.07

Food101

Method Base Novel HM

CLIP [33] 85.30 86.89 86.09
MMA [42] 85.03 86.53 85.77

2SFS 84.15 87.33 85.71

FGVC Aircraft

Method Base Novel HM

CLIP [33] 21.25 29.27 24.62
MMA [42] 28.63 27.67 28.14

2SFS 35.47 30.35 32.71

SUN397

Method Base Novel HM

CLIP [33] 69.80 73.01 71.37
MMA [42] 78.83 76.10 77.44

2SFS 79.49 77.13 78.29

DTD

Method Base Novel HM

CLIP [33] 54.17 58.21 56.12
MMA [42] 73.70 56.07 63.69

2SFS 75.85 55.23 63.92

EuroSAT

Method Base Novel HM

CLIP [33] 55.14 69.77 61.60
MMA [42] 41.80 57.20 48.30

2SFS 94.18 68.24 79.14

UCF101

Method Base Novel HM

CLIP [33] 69.08 72.96 70.97
MMA [42] 81.67 73.83 77.55

2SFS 84.21 74.62 79.12

Table 15. Experiments in base-to-novel generalization with the ViT-L/14 visual backbone k=4 shots per base class.

Average across datasets.

Method Base Novel HM

CLIP [33] 76.18 80.08 78.08
MMA [42] 82.70 81.60 80.25

2SFS 88.11 82.15 82.82

ImageNet

Method Base Novel HM

CLIP [33] 79.18 74.04 76.53
MMA [42] 82.00 76.67 79.25

2SFS 81.35 75.90 78.53

Caltech101

Method Base Novel HM

CLIP [33] 95.61 95.41 95.51
MMA [42] 97.30 97.30 97.30

2SFS 98.36 97.09 97.72

Oxford Flowers

Method Base Novel HM

CLIP [33] 80.34 83.05 81.67
MMA [42] 92.93 81.87 87.05

2SFS 97.94 81.77 89.13

Oxford Pets

Method Base Novel HM

CLIP [33] 93.78 96.53 95.14
MMA [42] 94.93 98.47 96.67

2SFS 96.46 98.56 97.50

Stanford Cars

Method Base Novel HM

CLIP [33] 74.56 84.65 79.29
MMA [42] 79.83 85.03 82.35

2SFS 82.50 85.11 83.79

Food101

Method Base Novel HM

CLIP [33] 93.75 94.82 94.28
MMA [42] 93.70 94.57 94.13

2SFS 93.11 94.76 93.93

FGVC Aircraft

Method Base Novel HM

CLIP [33] 37.52 44.21 40.59
MMA [42] 42.57 42.40 42.48

2SFS 51.58 44.57 47.82

SUN397

Method Base Novel HM

CLIP [33] 73.23 77.71 75.40
MMA [42] 82.17 81.80 81.98

2SFS 82.91 81.20 82.05

DTD

Method Base Novel HM

CLIP [33] 59.14 67.87 63.21
MMA [42] 65.90 67.00 66.45

2SFS 80.86 70.29 75.21

EuroSAT

Method Base Novel HM

CLIP [33] 70.93 82.90 76.45
MMA [42] 72.50 72.20 72.35

2SFS 92.92 67.15 77.96

UCF101

Method Base Novel HM

CLIP [33] 79.94 79.66 79.80
MMA [42] 82.70 81.60 82.15

2SFS 88.11 82.15 85.03



Table 16. Experiments in base-to-novel generalization with the ViT-L/14 visual backbone k=8 shots per base class.

Average across datasets.

Method Base Novel HM

CLIP [33] 76.18 80.08 78.08
MMA [42] 86.30 80.73 81.54

2SFS 88.28 82.24 83.66

ImageNet

Method Base Novel HM

CLIP [33] 79.18 74.04 76.53
MMA [42] 82.63 76.80 79.61

2SFS 82.43 76.46 79.34

Caltech101

Method Base Novel HM

CLIP [33] 95.61 95.41 95.51
MMA [42] 98.30 96.60 97.44

2SFS 98.52 96.62 97.56

Oxford Flowers

Method Base Novel HM

CLIP [33] 80.34 83.05 81.67
MMA [42] 97.97 80.30 88.26

2SFS 98.67 81.21 89.09

Oxford Pets

Method Base Novel HM

CLIP [33] 93.78 96.53 95.14
MMA [42] 95.77 98.33 97.03

2SFS 96.15 98.47 97.30

Stanford Cars

Method Base Novel HM

CLIP [33] 74.56 84.65 79.29
MMA [42] 82.63 84.20 83.41

2SFS 85.51 84.97 85.24

Food101

Method Base Novel HM

CLIP [33] 93.75 94.82 94.28
MMA [42] 93.87 94.87 94.37

2SFS 93.81 94.76 94.28

FGVC Aircraft

Method Base Novel HM

CLIP [33] 37.52 44.21 40.59
MMA [42] 46.50 41.23 43.71

2SFS 55.00 44.49 49.19

SUN397

Method Base Novel HM

CLIP [33] 73.23 77.71 75.40
MMA [42] 83.67 81.40 82.52

2SFS 84.25 81.84 83.03

DTD

Method Base Novel HM

CLIP [33] 59.14 67.87 63.21
MMA [42] 78.13 69.90 73.79

2SFS 83.91 70.01 76.33

EuroSAT

Method Base Novel HM

CLIP [33] 70.93 82.90 76.45
MMA [42] 72.73 72.00 72.36

2SFS 94.50 71.68 81.53

UCF101

Method Base Novel HM

CLIP [33] 79.94 79.66 79.80
MMA [42] 86.30 80.73 83.42

2SFS 88.28 82.24 85.15
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