Rethinking Few-Shot Adaptation of Vision-Language Models in Two Stages

Supplementary Material

This Supplementary Material aims to expand and com-
plement the work’s main body. We structure it as follows:

* Generalization to other PEFT techniques. Appendix A
shows that the benefit of the two-stage design of 2SFS is
not limited to Layer Normalization. In Appendix A.l we
experiment with LoRA, with particular emphasis on the
relationship with CLIP-LoRA [47]; Appendix A.2 exper-
iments with Prompt Learning techniques: CoOp [52] and
“Independent Vision-Language Prompting” (IVLP);

* Additional visual backbones. Appendix B complements
Sec. 5.1, by reporting results in the base-to-novel setting
also for the ViT-B/32 and ViT-L/14 backbones;

* Robustness to shots availability. Appendix C reports the
results of the main paper, with varying numbers of avail-
able shots. We further experiment with k={4, 8} shots;

* Hyperparameter analysis. Appendix D analyzes the im-
pact of the total number of allowed iterations m;

* Extended preliminary analysis. Appendix E reports
additional evidence for the preliminary observations of
Sec. 3.2, with a focus on identifying the “best” and
“worst” cases. We devote explanations for the slight fail-
ures of Fig. 5 with Oxford Pets [32] and Food-101 [1];

¢ Limitations are discussed in Appendix F.

A. 2SFS with different PEFT techniques

A.1. LoRA

We expand Sec. 5 reporting results of Tab. 1 and Tab. 2
when LoRA [12] is applied in the first stage. Note that
2SFS:.za can be seen as a two-stage variant of the recently
introduced CLIP-LoRA strategy, hence we are particularly
interested in understanding the benefits, if any, relative to it.
Implementation details. Following Sec. 5, we perform a
sweep for «v in [0.2, 0.8] with a step size of 0.1, only for the
base-to-novel setting with the ViT-B/16 backbone, validat-
ing on ImageNet. We obtain an optimal value of o = 0.3,
which aligns with the behavior highlighted by Fig. 2 (i.e.,
LoRA tends to saturate more quickly than LayerNorm). We
transfer it to all other experiments in this Supplementary
Material when 2SFS; ra is specified. We strictly follow the
CLIP-LoRA recipe for plugging low-rank modules in CLIP.

A.1.1. Base-to-novel generalization

Extended results for the base-to-novel setup are given in
Tab. 3. We observe that, w.r.t. CLIP-LoRA, 2SFS; ga pro-
vides a notable improvement, especially pronounced in the
Novel metric (+3.02% on average) and, more in general,
it boosts performance on 32 out of 33 {dataset, metric}
combinations. Overall, these results take a step further in

confirming the hypothesis that the two-stage design is ben-
eficial for other PEFT strategies, since 2SFS;ra exhibits
the 2nd greatest Harmonic Mean on average, only outper-
formed by MMA [42] among published works (excluding
our own alternative 2SFS1.yernorm)-

A.1.2. All-to-all adaptation

Tab. 4 reports results for the all-to-all scenario. Following
Sec. 5.2, we experiment with ViT-B/16, ViT-B/32, and ViT-
L/14, inheriting hyperparameters from the base-to-novel
setup. Here, 2SFS;z» outperforms, on average, all strate-
gies for all backbones, including 2SFS;.yernorm. This fur-
ther aligns with the evidence of Sec. 3.2, where LoRA is
shown to incorporate more helpful knowledge to discrimi-
nate among available categories. Compared to CLIP-LoRA,
2SFSyora outperforms it in 27 out of 33 {dataset, back-
bone} combinations, further supporting the benefits of the
two-stage design.

A.2. Prompt Learning

Inspired by “prefix tuning” [23] for Language Models,
Prompt Learning has become arguably the most widely
adopted approach to adapt VLMs [2, 15, 16, 36, 43, 51, 52]
in recent years. We do, hence, explore here if 2SFS also
successfully integrates with Prompt Learning techniques.
Implementation details. To do so, we focus on CoOp [52]
and “Independent Vision-Language Prompting” (IVLP), a
baseline introduced in [16]. We do not conduct any hy-
perparameter tuning for these PEFT methods, but we set
a=0.3 as used with LoRA, simply leveraging prior knowl-
edge that excessive Prompt Learning severely harms gener-
alization [51]. To exactly compare with both approaches,
we use the same batch size, optimizer setup, and number of
epochs suggested in the original papers. When switching
to the second stage of 2SFS, we train the linear classifier
with the same optimizer setup described in the main paper.
Results with the ViT-B/16 backbone and k=16 shots are
given in Tab. 5 (base-to-novel generalization). For all
benchmarks, wrapping prompt learning approaches in the
two-stage design improves the Harmonic Mean between
seen/unseen semantic categories, providing further evi-
dence to support our findings. The gap is particularly ev-
ident with CoOp (43.56 overall HM), although also IVLP
significantly benefits from this design (41.23 overall HM).
We also emphasize that the design of 2SFS is computation-
ally friendlier than the original approaches: only the gradi-
ent w.r.t. the classifier is required for the second stage.

Iwith the only exception of ImageNet, for which we only train for 10
epochs to save computational resources.



Table 3. Experiments in base-to-novel generalization with the ViT-B/16 visual backbone. All methods use k=16 shots per base class.
“CLIP” refers to zero-shot performance with dataset-specific templates, e.g., “a photo of a {}, a type of flower” for Oxford Flowers.
To highlight the benefits of the two-stage design, we report an additional line with the absolute improvement of 2SFS; .ra relative to its
single-stage counterpart CLIP-LoRA [47]. In each table, the best performer is bold, and the second best is underlined.

Average across datasets. ImageNet Caltech101
Method Base Novel | HM Method Base Novel | HM Method Base Novel | HM
CLIP [33] 69.34 74.22 71.70 CLIP [33] 72.43 68.14 70.22 CLIP [33] 96.84 94.00 95.40
CoOP [52] 82.69 63.22 71.66 CoOp [52] 76.47 67.88 71.92 CoOP [52] 98.00 89.81 93.73
CoCoOp [51] 80.47 71.69 75.83 CoCoOp [51] 75.98 70.43 73.10 CoCoOp [51] 97.96 93.81 95.84
MaPLe [16] 82.28 75.14 78.55 MaPLe [16] 76.66 70.54 73.47 MaPLe [16] 97.74 94.36 96.02
ProGrad [53] 82.48 70.75 76.16 ProGrad [53] 77.02 66.66 71.46 ProGrad [53] 98.02 93.89 9591
KgCoOp [43] 80.73 73.60 77.00 KgCoOp [43] 75.83 69.96 72.78 KgCoOp [43] 97.72 94.39 96.03
CLIP-LoRA [47] 8532 7063 | 77.28 CLIP-LoRA [47]  77.58 6876 | 7291 CLIP-LoRA [47] 9819 9305 | 9555
MMA [42] 83.20 76.80 79.87 MMA [42] 77.31 71.00 74.02 MMA [42] 98.40 94.00 96.15
2SFSpayernorm 85.55 75.48 80.20 2SFSpayernorm 77.71 70.99 74.20 2SFSpayernorm 98.71 94.43 96.52
2SFS1ora 85.97 73.65 79.33 2SFS1ora 77.70 71.60 74.53 2SFS1ora 98.45 94.47 96.42
+0.65 +3.02 +2.05 +0.12 +2.84 +1.62 +0.26 +1.42 +0.87
Oxford Flowers Oxford Pets Stanford Cars
Method Base Novel | HM Method Base Novel | HM Method Base Novel | HM
CLIP [33] 72.08 77.80 74.83 CLIP [33] 91.17 97.26 94.12 CLIP [33] 63.37 74.89 68.65
CoOP [52] 97.60 59.67 74.06 CoOP [52] 93.67 95.29 94.47 CoOP [52] 78.12 60.40 68.13
CoCoOp [51] 94.87 71.75 81.71 CoCoOp [51] 95.20 97.69 96.43 CoCoOp [51] 70.49 73.59 72.01
MaPLe [16] 95.92 72.46 82.56 MaPLe [16] 95.43 97.76 96.58 MaPLe [16] 72.94 74.00 73.47
ProGrad [53] 95.54 71.87 82.03 ProGrad [53] 95.07 97.63 96.33 ProGrad [53] 77.68 68.63 72.88
KgCoOp [43] 95.00 74.73 83.65 KgCoOp [43] 94.65 97.76 96.18 KgCoOp [43] 71.76 75.04 73.36
CLIP-LoRA [47] 9791  68.61 | 80.68 CLIP-LoRA [47] 9436 9571 | 95.03 CLIP-LoRA [47] 8393 6554 | 73.60
MMA [42] 97.77 75.93 85.48 MMA [42] 95.40 98.07 96.72 MMA [42] 78.50 73.10 75.70
2SFSipayernorm 98.29 76.17 85.83 2SFStrayerNorm 95.32 97.82 96.55 2SFSpayerNorm 82.50 74.80 78.46
2SFStora 98.04 70.95 82.32 2SFS1ora 95.50 97.13 96.31 2SFS10ra 83.87 70.64 76.69
+0.13 +2.34 +1.64 +1.14 +1.42 +1.28 —0.06 +5.10 +3.09
Food 101 FGVC Aircraft SUN 397
Method Base Novel | HM Method Base Novel | HM Method Base Novel | HM
CLIP [33] 90.10 91.22 90.66 CLIP [33] 27.19 36.29 31.09 CLIP [33] 69.36 75.35 72.23
CoOP [52] 88.33 82.26 85.19 CoOP [52] 40.44 22.30 28.75 CoOP [52] 80.60 65.89 72.51
CoCoOp [51] 90.70 91.29 90.99 CoCoOp [51] 33.41 23.71 27.74 CoCoOp [51] 79.74 76.86 78.27
MaPLe [16] 90.71 92.05 91.38 MaPLe [16] 37.44 35.61 36.50 MaPLe [16] 80.82 78.70 79.75
ProGrad [53] 90.37 89.59 89.98 ProGrad [53] 40.54 27.57 32.82 ProGrad [53] 81.26 74.17 77.55
KgCoOp [43] 90.50 91.70 91.09 KgCoOp [43] 36.21 33.55 34.83 KgCoOp [43] 80.29 76.53 78.36
CLIP-LoRA [47] 86.84 86.67 86.76 CLIP-LoRA [47] 50.10 26.03 34.26 CLIP-LoRA [47] 81.11 74.53 77.68
MMA [42] 90.13 91.30 90.71 MMA [42] 40.57 36.33 38.33 MMA [42] 82.27 78.57 80.38
2SFSpayernorm 89.11 91.34 90.21 2SFSpayerNorm 47.48 35.51 40.63 2SFS1ayerNorm 82.59 78.91 80.70
2SFS1ora 88.47 89.96 89.21 2SFS1ora 51.00 31.37 38.85 2SFS10ra 82.43 79.05 80.70
+1.61 +3.29 +2.45 +0.90 +5.34 + 4.59 +1.32 +4.52 +3.02
DTD EuroSAT UCF101
Method Base Novel | HM Method Base Novel | HM Method Base Novel | HM
CLIP [33] 53.24 59.90 56.37 CLIP [33] 56.48 64.05 60.03 CLIP [33] 70.53 77.50 73.85
CoOP [52] 79.44 41.18 54.24 CoOP [52] 92.19 54.74 68.69 CoOP [52] 84.69 56.05 67.46
CoCoOp [51] 77.01 56.00 64.85 CoCoOp [51] 87.49 60.04 71.21 CoCoOp [51] 82.33 73.45 77.64
MaPLe [16] 80.36 59.18 68.16 MaPLe [16] 94.07 73.23 82.35 MaPLe [16] 83.00 78.66 80.77
ProGrad [53] 77.35 52.35 62.45 ProGrad [53] 90.11 60.89 72.67 ProGrad [53] 84.33 74.94 79.35
KgCoOp [43] 77.55 54.99 64.35 KgCoOp [43] 85.64 64.34 73.48 KgCoOp [43] 82.89 76.67 79.65
CLIP-LoRA [47] 83.95 62.84 71.39 CLIP-LoRA [47] 97.04 62.50 76.03 CLIP-LoRA [47] 87.52 72.74 79.45
MMA [42] 83.20 65.63 73.38 MMA [42] 85.46 82.34 83.87 MMA [42] 86.23 80.03 82.20
2SFSiayerNorm 84.60 65.01 73.52 2SFS1ayerNorm 96.91 67.09 79.29 2SFSpayerNorm 87.85 78.19 82.74
2SFS1ora 84.53 63.53 72.54 2SFS1ora 97.05 64.59 717.56 2SFSt1ora 88.59 76.82 82.28
+0.58 +0.69 +1.15 +0.01 +2.09 +1.53 +1.07 +4.08 +2.83




Table 4. All-to-all experiments, where train/test categories coincide, with the ViT-B/16 (top), ViT-B/32 (middle), and ViT-L/14 (bottom)
backbones. All methods use k& = 16 shots per class. To highlight the benefits of the two-stage design, we report an additional line with the
absolute improvement of 2SFS; ora relative to its single-stage counterpart CLIP-LoRA [47]. In each group, the best performer is marked

by bold text; the second best is underlined.

BACKBONE  METHOD IMAGENET SUN AIR ESAT CARS FOOD PETS FLWR CAL DTD UCF \ MEAN
Zero-Shot 66.7 62.6 247 47.5 65.3 86.1 89.1 714 92.9 43.6 66.7 65.1
CoOp [52] (ctx=16) 71.9 74.9 43.2 85.0 82.9 84.2 92.0 96.8 95.8 69.7 83.1 80.0
CoCoOp [51] 71.1 72.6 333 73.6 72.3 87.4 93.4 89.1 95.1 63.7 77.2 75.4
TIP-Adapter-F [50] 73.4 76.0 44.6 85.9 82.3 86.8 92.6 96.2 95.7 70.8 83.9 80.7
CLIP-Adapter [10] 69.8 74.2 342 71.4 74.0 87.1 92.3 92.9 94.9 59.4 80.2 75.5
PLOT++ [2] 72.6 76.0 46.7 92.0 84.6 87.1 93.6 97.6 96.0 71.4 85.3 82.1

ViT-B/16  KgCoOp [43] 70.4 73.3 36.5 76.2 74.8 87.2 93.2 93.4 95.2 68.7 81.7 77.3
TaskRes [45] 73.0 76.1 44.9 82.7 83.5 86.9 92.4 97.5 95.8 71.5 84.0 80.8
MaPLe [16] 71.9 74.5 36.8 87.5 74.3 87.4 93.2 942 95.4 68.4 81.4 78.6
ProGrad [53] 72.1 75.1 43.0 83.6 82.9 85.8 92.8 96.6 95.9 68.8 82.7 79.9
LP++ [13] 73.0 76.0 42.1 85.5 80.8 87.2 92.6 96.3 95.8 71.9 83.9 80.5
CLIP-LoRA [47] 73.6 76.1 54.7 92.1 86.3 84.2 92.4 98.0 96.4 72.0 86.7 83.0
MMA [42] 73.2 76.6 44.7 85.0 80.2 87.0 93.9 96.8 95.8 72.7 85.0 81.0
2SFS rayerNorm 73.7 7.0 50.0 924 854 86.1 93.7 97.7 96.4 73.2 86.6 82.9
2SFS rora 73.8 769 546 92.7 86.9 85.7 93.8 98.0 96.4 73.5 87.3 83.6

+0.2 +0.8 -0.1 +0.6 +0.6 +1.5 +1.4 0.0 0.0 +1.5 +0.6 +0.6
Zero-Shot 61.9 62.0 19.3 45.1 60.4 80.5 87.5 67.0 91.1 42.6 62.2 61.8
CoOp [52] (ctx=16) 66.8 722 329 83.3 76.0 78.6 88.7 954 94.9 65.3 78.6 75.7
CoCoOp [51] 66.0 69.8 22.6 70.4 64.6 81.9 91.0 82.5 94.3 59.7 75.3 70.7
TIP-Adapter-F [50] 68.4 74.1 34.8 83.4 71.0 81.7 90.4 94.3 95.1 68.0 80.5 77.1
CLIP-Adapter [10] 64.9 71.8 26.7 64.7 68.9 81.9 90.1 88.7 94.8 58.1 76.5 71.6
PLOT++ [2] 67.4 73.4 36.3 91.1 77.4 79.7 89.1 96.3 94.9 67.0 81.5 71.6

ViT-B/32 KgCoOp [43] 65.4 71.0 23.7 70.1 67.3 81.7 90.8 86.1 94.4 65.1 71.5 72.1
TaskRes [45] 68.2 73.6 37.0 71.7 78.0 81.4 89.4 95.5 95.7 68.3 80.6 76.9
MaPLe [16] 66.7 72.0 28.0 83.3 66.9 82.1 91.7 89.0 95.1 63.4 71.3 74.1
ProGrad [53] 66.9 73.2 333 81.0 76.1 80.1 89.3 95.1 95.0 65.8 79.6 75.9
LP++[13] 68.1 74.0 343 82.8 75.2 81.8 90.5 93.9 95.0 67.8 80.1 76.7
CLIP-LoRA [47] 68.4 74.0 44.9 91.8 79.7 78.2 88.8 96.2 95.2 68.2 82.8 78.9
MMA [42] 68.0 74.0 34.0 80.1 73.5 81.4 91.5 94.3 95.6 68.9 81.7 76.7
2SFS rayerNorm 68.4 74.8 40.2 92.1 80.2 80.8 90.3 96.3 95.8 70.4 82.3 79.2
2SFS 10ra 68.6 745 444 92.2 81.3 80.2 90.0 96.4 95.7 69.6 82.5 79.6

+0.2 +0.5 -0.5 +0.4 +1.6 +2.0 +1.2 +0.2 +0.5 +1.4 -0.3 +0.7
Zero-Shot 72.9 67.6 32.6 58.0 76.8 91.0 93.6 79.4 94.9 53.6 74.2 722
CoOp [52] (ctx=16) 78.2 77.5 55.2 88.3 89.0 89.8 94.6 99.1 97.2 74.4 87.3 84.6
CoCoOp [51] 77.8 76.7 452 79.8 82.7 91.9 95.4 95.3 97.4 71.4 85.2 81.7
TIP-Adapter-F [50] 79.3 79.6 55.8 86.1 88.1 91.6 94.6 98.3 97.5 74.0 87.4 84.8
CLIP-Adapter [10] 76.4 78.0 46.4 75.8 83.8 91.6 94.3 97.3 97.3 71.3 86.1 81.7
PLOT++ [2] 78.6 79.1 44.1 92.2 87.2 90.2 93.6 98.8 97.5 75.0 87.1 83.9

ViT-L/14 KgCoOp [43] 76.8 76.7 47.5 83.6 83.2 91.7 95.3 96.4 97.4 73.6 86.4 82.6
TaskRes [45] 78.1 76.9 55.0 84.3 87.6 91.5 94.7 97.8 97.3 74.4 86.6 84.0
MaPLe [16] 78.4 78.8 46.3 85.4 83.6 92.0 95.4 97.4 97.2 72.7 86.5 83.1
ProGrad [53] 78.4 78.3 55.6 89.3 88.8 90.8 94.9 98.7 97.5 73.7 87.7 84.9
LP++[13] 79.3 79.7 54.6 89.3 87.7 91.7 94.9 98.5 97.4 76.1 88.1 85.2
CLIP-LoRA [47] 79.6 79.4 66.2 93.1 90.9 89.9 94.3 99.0 97.3 76.5 89.9 86.9
MMA [42] 79.9 80.2 56.4 76.3 88.0 92.0 95.5 98.4 97.6 75.8 88.0 84.4
2SFS rayernorm 79.4 80.3 64.1 92.9 90.3 91.1 95.5 99.1 97.5 78.0 89.5 87.1
2SFS 1ora 79.7 80.7 66.5 93.2 91.2 90.8 95.5 99.0 97.5 77.2 90.3 874

+0.1 +1.3 +0.3 +0.1 +0.3 +0.9 +1.2 0.0 +0.2 +0.7 +0.4 +0.5

B. Base-to-novel generalization with different
backbones

This Appendix complements Sec. 5.1, where results are
given for the ViT-B/16 backbone mimicking the experimen-
tal setup of [16, 42]. Specifically, here we focus on the

comparison with the best competitor MMA [42] and expand
the experimental evaluation to the ViT-B/32 and ViT-L/14
backbones further.

Implementation Details. To align with Sec. 5.1, we use
layer normalization in the first stage as in the main body of



Table 5. Direct comparison between established prompt learning approaches (CoOp [52] and IVLP [16]) and their behavior when wrapped
in the Two-Stage design of 2SFS. We examine the base-to-novel setting with ViT-B/16 and k=16 shots per class.

Average across datasets. ImageNet Caltech101
Method Base Novel ‘ HM Method Base Novel ‘ HM Method Base Novel ‘ HM
CoOp [52] 82.69  63.22 71.66 CoOp [52] 7647 67.88 71.92 CoOp [52]  98.00 89.81 93.73
2SFS coop 8349  68.27 75.12 2SFS coop 77.44  71.11 74.14 2SFS coop 98.00  91.99 94.90
IVLP 84.21 71.79 77.51 IVLP 77.00  66.50 71.37 IVLP 98.30  93.20 95.68
2SFS 1vip 84.53 73.69 78.74 2SFS 1vip 75.85 71.05 73.37 2SFS 1vie 98.45 94.32 96.34
Oxford Flowers Oxford Pets Stanford Cars
Method Base Novel ‘ HM Method Base Novel ‘ HM Method Base Novel ‘ HM
CoOp [52] 97.60  59.67 74.06 CoOp [52]  93.67 95.29 94.47 CoOp [52]  78.12  60.40 68.13
2SFS coop 98.16  69.46 81.35 2SFS coop 93.35 96.96 95.12 2SFS coop 80.15 67.87 73.50
IVLP 9797  72.10 83.07 IVLP 9490  97.20 96.04 IVLP 79.53 71.47 75.28
2SFS 1yip 98.1 72.93 83.66 2SFS 1yip 9546  97.61 96.53 2SFS 1vip 81.69 73.5 77.38
Food 101 FGVC Aircraft SUN 397
Method Base  Novel | HM Method Base  Novel | HM Method Base  Novel | HM
CoOp [52]  88.33 82.26 85.19 CoOp [52] 4044 2230 28.75 CoOp [52]  80.60  65.89 72.51
2SFS coop 88.06 88.68 88.37 2SFS coop 44.60 2991 35.81 2SFS coop 79.16  70.32 74.48
IVLP 89.37  90.30 89.83 IVLP 42.60 25.23 31.69 IVLP 81.60  75.50 78.43
2SFS 1vip 89.45 91.51 90.47 2SFS 1vip 44.78 25.93 32.85 2SFS 1vie 81.31 78.27 79.76
DTD EuroSAT UCF101
Method Base Novel ‘ HM Method Base Novel ‘ HM Method Base Novel ‘ HM
CoOp [52] 79.44  41.18 54.24 CoOp [52]  92.19 5474 68.69 CoOp [52]  84.69 56.05 67.46
2SFS coop 81.40  49.11 61.27 2SFS coop 9294  50.76 65.66 2SFS coop 85.04  64.67 73.47
IVLP 82.40  56.20 66.82 IVLP 96.73 67.83 79.74 IVLP 85.93 74.17 79.62
2SFS 1y 83.45 53.66 65.32 2SFS 1vip 95.01 74.51 83.52 2SFS 1y1p 86.28 77.27 81.53

the paper, and make no hyperparameter changes. Results
for these backbones are not available in the official article

for ViT-B/16, Tab. 13 and Tab. 14 for ViT-B/32, and Tab. 15
and Tab. 16 for ViT-L/14, with 4 and 8 shots, respectively.2

of [42], hence we used the open-source implementation of
the authors with no modifications (the repository already
integrates with different CLIP variants) as done for the all-
to-all experiments of Sec. 5.2.

Results are given in Tab. 6 for ViT-B/32 and in Tab. 7 for
ViT-L/14. For both backbones, 2SFS largely outperforms
MMA on average, exhibiting larger improvements than
those emerging with the ViT-B/16 visual encoder (+1.70%
and +1.83%, respectively), confirming that the effective-
ness of 2SFS does not depend on a specific backbone.

C. Varying Shots

In Sec. 5 of the main body, results are given for the most
popular FSA scenario in which k=16 shots are available
per category. Here, we test the robustness of 2SFS in ex-
treme data scarcity, working with both k=4 and k=8 shots
for both all-to-all and base-to-novel cases. The results are
discussed below.

Base-to-novel generalization. In line with Appendix B, we
focus on the comparison with MMA [42]. We experiment
with all backbones, and report results in Tab. 11 and Tab. 12

On average, 2SFS outperforms MMA for all backbones
and all shots setups. Importantly, we observe that the per-
formance gap increases as the shots decrease, up to large
gaps such as +3.98% and +4.45% HM with ViT-B/16 and
ViT-B/32 using 4 shots. We speculate this behavior stems
from the reduced amount of learnable parameters of 2SFS,
which better accommodates a smaller number of examples.
To ground the discussion in some numbers: summing up
LayerNorm instances totals around 61k parameters for ViT-
B backbones, while MMA introduces 674k new parameters.
All-to-all adaptation. Results for the all-to-all setup are
given in Tab. 9 and Tab. 10 for 4 and 8 shots. We include
numbers from all 11 competitors of Sec. 5.2, following the
reported results of [47], and reproducing when unavailable.
Also in this case, 2SF'S outperforms all competitors on av-
erage for all {backbones, shots} combinations.

In summary, looking at both scenarios, 2SFS appears to
be a stronger approach w.r.t. to the comparison suite, regard-

2Please note that results for CoOp, CoCoOp, ProGrad, and KgCoOp
with the ViT-B/16 backbone and k€{4, 8} are given in the supplementary
material of [43], which we omit to avoid excessively dense tables. 2SFS
largely outperforms all methods with available results.



Table 6. Experiments in base-to-novel generalization, with the ViT-B/32 visual backbone and k£ = 16 shots per base category, focusing on
the comparison with MultiModal Adapter (MMA) [42]. “CLIP” refers to zero-shot performance with dataset-specific templates, e.g., “a
photo of a {}, a type of flower” for Oxford Flowers. Formatting follows Tab. 1.

Average across datasets. ImageNet Caltech101
Method Base  Novel | HM Method Base  Novel | HM Method Base  Novel | HM
CLIP[33] 6727  71.68 ‘ 69.41 CLIP[33] 6749  64.06 ‘ 65.73 CLIP[33]  94.06  94.00 ‘ 94.03
MMA [42]  78.69  71.04 | 74.67 MMA [42] 7253  65.77 | 68.98 MMA [42] 9720  92.63 | 94.86
2SFS 8232 7123 | 76.37 2SFS 7252 66.62 | 69.44 2SFS 97.83 9330 | 9551
Oxford Flowers Oxford Pets Stanford Cars
Method Base  Novel | HM Method Base  Novel | HM Method Base  Novel | HM
CLIP[33] 7236  73.69 ‘ 73.02 CLIP[33]  90.64  96.87 ‘ 93.65 CLIP[33]  60.72  69.74 ‘ 64.92
MMA [42] 9550 7157 | 81.82 MMA [42] 9377 9630 | 95.02 MMA [42] 7373 6927 | 7143
2SFS 96.64  70.02 | 8120 2SFS 93.18  95.56 | 94.35 2SFS 7821 7030 | 74.04
Food 101 FGVC Aircraft SUN 397
Method Base Novel ‘ HM Method Base Novel ‘ HM Method Base Novel ‘ HM
CLIP[33] 8530  86.89 ‘ 86.09 CLIP[33] 2125 29.27 ‘ 24.62 CLIP[33]  69.80  73.01 ‘ 71.37
MMA [42] 8577  87.13 | 86.44 MMA [42] 3177 2873 | 30.17 MMA [42] 8027 7657 | 78.38
2SFS 8475  87.37 | 86.04 2SFS 39.12 3085 | 34.50 2SFS 8111 78.02 | 79.53
DTD EuroSAT UCF101
Method Base Novel ‘ HM Method Base Novel ‘ HM Method Base Novel ‘ HM
CLIP[33] 5417 5821 ‘ 56.12 CLIP[33]  55.14  69.77 ‘ 61.60 CLIP[33]  69.08  72.96 ‘ 70.97
MMA [42] 7950  57.00 | 66.40 MMA [42] 7183 6297 | 67.11 MMA [42]  83.77 7347 | 78.28
2SFS 80.09 5463 | 64.95 2SFS 96.80  62.68 | 76.09 2SFS 8525 7415 | 7931

Table 7. Experiments in base-to-novel generalization, with the ViT-L/14 visual backbone and k£ = 16 shots per base category, focusing on
the comparison with MultiModal Adapter (MMA) [42]. “CLIP” refers to zero-shot performance with dataset-specific templates, e.g., “a
photo of a {}, a type of flower” for Oxford Flowers. Formatting follows Tab. 1.

Average across datasets. ImageNet Caltech101
Method Base  Novel | HM Method Base Novel | HM Method Base  Novel | HM
CLIP[33] 76.18 80.08 | 78.08 CLIP[33] 79.18 74.04 | 76.53 CLIP[33] 9561 9541 | 9551
MMA [42] 8570  79.06 | 82.25 MMA [42] 83.17 7673 | 79.82 MMA [42]  98.60 9597 | 97.27
2SFS 89.05  79.64 | 84.08 2SFS 83.11 7698 | 79.93 2SFS 98.82  96.69 | 97.74
Oxford Flowers Oxford Pets Stanford Cars
Method Base Novel HM Method Base Novel ‘ HM Method Base Novel ‘ HM
CLIP[33] 8034 8305 | 8167 CLIP[33] 9378 9653 | 95.14 CLIP[33] 7456  84.65 | 79.29
MMA [42] = 99.00  80.20 | 88.61 MMA [42] 9623 9870 | 97.45 MMA [42] 8527 83.80 | 84.53
23H5 9899 8073 | 8893 2SFS 96.74  98.64 | 97.68 2SFS 87.46  84.56 | 85.99
Food 101 FGVC Aircraft SUN 397
Method Base Novel ‘ HM Method Base Novel ‘ HM Method Base Novel ‘ HM
CLIP[33] 9375 9482 | 94.28 CLIP[33]  37.52 4421 | 40.59 CLIP[33] 7323 7771 | 7540
MMA [42] 9423  95.10 | 94.66 MMA [42]  50.00 4247 | 45.93 MMA [42] 8503 81.77 | 83.37
2SFS 93.59 9493 | 94.26 2SFS 5076 4359 | 5041 2SFS 85.57 8224 | 83.87
DTD EuroSAT UCF101
Method Base Novel ‘ HM Method Base Novel ‘ HM Method Base Novel ‘ HM
CLIP[33] 59.14 6787 | 6321 CLIP[33] 7093 8290 | 76.45 CLIP[33] 7994 79.66 | 79.80
MMA [42] 8523 7077 | 77.33 MMA [42] 7733 6277 | 69.29 MMA [42]  88.60 81.37 | 84.83
2SFS 87.35 7073 | 7817 2SFS 9841  64.69 | 78.06 2SFS 89.80 8224 | 85.85




M Base Novel | HM

M =100 77.55 70.50 | 73.86
M =300 77.71 7099 | 74.20
M =500 7735 7T1.16 | 74.12

Table 8. Sweep on M € {100, 300,500} when o = 0.6 on the
ImageNet validation set and CLIP ViT-B/16.

less of how many shots are available. Importantly, it does
so by (i) not employing any external source of knowledge
(such as LLMs to generate descriptions or Image Gener-
ators to craft new examples [4]), (ii) avoiding the usage of
well-engineered templates for each dataset, which are likely
to be unavailable in practice, and (iii) only leveraging a sin-
gle template “a photo of a {}”, in contrast to an ensemble
of templates [17]. We speculate, however, that such orthog-
onal techniques may further improve 2SFS.

D. Total gradient steps allowed

This Appendix briefly analyzes the impact of increasing or
reducing the total number of iterations m. For simplicity,
we stick to the ViT-B/16 backbone and the ImageNet val-
idation set. Recall that in Sec. 5, the total number of it-
erations is defined as m = M x k, where, in our case,
M = 300 and k is the number of shots. M was chosen so
to match the number of gradient steps performed on Ima-
geNet with = 10 epochs (constant mini-batch size of 32, 16
shots for all categories). In essence, this means that the bud-
get is expressed in terms of a constant number of gradient
steps rather than epochs, following [47]. Here, we analyze
the impact of varying M when a=0.6 as in Sec. 5. Re-
sults are given in Tab. 8. We observe that M = 100 likely
allocates insufficient compute for learning a good feature
extractor in the first stage (lowest “Novel” metric). In con-
trast, M = 300 and M = 500 exhibit more comparable
behaviors, which leads to choosing M = 300 considering
the reduced overall runtime.

E. Extended preliminary analysis

Here, we aim to enrich the preliminary analysis conducted
in Sec. 3.2. Recall that Sec. 3.2 introduces the natural emer-
gence of two distinct stages when training CLIP ViT-B/16
with three different PEFT techniques in the low-data regime
of FSA, and does so by visualizing the learning dynamics
on DTD [3] and FGVC Aircraft [29]. First, we show that
such a dynamic is not limited to those datasets. Second,
we identify a saturating behavior of Layer Normalization,
which we link to the data-to-parameter ratio. Finally, we
focus on Oxford Pets [32] and Food-101 [1], which were
the only datasets (out of 11) leading to a slight performance
degradation during the ablation study of Sec. 5.3.

Consistent behaviors. Fig. 6 shows that analogous and
consistent patterns emerge also for UCF-101 [37] and Eu-
roSAT [11] for all the PEFT techniques of our study. Partic-
ularly with EuroSAT, this behavior emerges to the extreme,
with sharp breakpoints. In line with Sec. 3.2, BitFit tends to
“break” earlier than both LoRA and LayerNorm.
Saturating behaviors. Fig. 7 shows consistent breakpoints
for LoRA and BitFit further, displaying SUN397 [40] and
ImageNet [34]. These two datasets have a trait in com-
mon w.r.t. the rest of the evaluation suite: a much larger
label space. In FSA, where samples are constant per cat-
egory, this inevitably entails a larger amount of examples.
In parallel, LayerNorm instances total a reduced number of
parameters w.r.t. to LoRA and BitFit (61k, 184k, 125k, re-
spectively). We speculate that the more balanced data-to-
parameter ratio of LayerNorm for these larger datasets has
a regularizing effect, which avoids breaking and reaches a
behavior similar to saturation, where the novel class accu-
racy remains constant.

Unexpected behaviors. Fig. 8 depicts the learning dynam-
ics on Food-101 [1] and Oxford Pets [32]. These were the
only two datasets where including a second stage did not ap-
pear beneficial in Fig. 5 of the main body. From the dynam-
ics, the reason is evident: base and novel accuracy break
together. For both datasets, base accuracy either decreases
or saturates right after the breakpoint (pink line), implying
overfitting since training data are available for base cate-
gories only. This suggests that « and M should be tailored
to these datasets, to avoid training a classifier on overfitted
features. However, we consider it fairer to transfer hyper-
parameters across datasets since, in practice, no annotated
data except for the shots should be available in FSA, which
raises concerns about the feasibility of tuning hyperparam-
eters per dataset.

F. Limitations

In this work, we build on the finding that PEFT techniques
learn good task-level features to design a simple and effec-
tive strategy for few-shot adaptation. For completeness, we
identify and report three limitations of our work, which we
hope can help construct future works.

Evaluating outside of our suite. While we successfully ex-
periment with a variety of backbones (i.e., ViT-B/16, ViT-
B/32, ViT-L/14), datasets (i.e., 11 different benchmarks),
settings (i.e., base-to-novel, all-to-all), PEFT techniques
(i.e., LayerNorm tuning and LoRA), and data availability
conditions (i.e., 4, 8, and 16 shots), as per most empirical
observations, our results might not extend when tested with
other (or future) PEFT strategies and on different bench-
marks or additional models.

Expanding the variety of tasks. Our work focuses on
downstream classification, following the established and re-
cent field literature [2, 10, 16,42, 43, 45,47, 50-53]. How-



Table 9. All-to-all experiments with k = 4 shots, using ViT-B/16, ViT-B/32, and ViT-L/14. Formatting follows Tab. 2.

BACKBONE ~METHOD IMAGENET SUN AIR ESAT CARS FOOD PETS FLWR CAL DTD UCF | MEAN
Zero-Shot [33] 66.7 62.6 247 4715 65.3 86.1 89.1 714 929 436 667 | 65.1
CoOp [52] (ctx=16) 68.8 69.7 309  69.7 74.4 84.5 92.5 922 945 595 776 | 740
CoCoOp [51] 70.6 704 306 617 69.5 86.3 92.7 81.5 948 557 753 | 717
TIP-Adapter-F [50] 70.7 70.8 357 768 74.1 86.5 91.9 921 948 598 781 | 756
CLIP-Adapter [10] 68.6 68.0 279 512 67.5 86.5 90.8 731 940 461 706 | 677
PLOT++ [2] 70.4 717 353 832 76.3 86.5 92.6 929 951 624 798 | 769
ViT-B/16 KgCoOp [43] 69.9 715 322 718 69.5 86.9 92.6 870 950 587 776 | 739
TaskRes [45] 71.0 727 334 742 76.0 86.0 91.9 850 950 60.1 762 | 747
MaPLe [16] 70.6 714 300 699 70.1 86.7 93.3 849 950 590 771 | 735
ProGrad [53] 70.2 717 341 696 75.0 85.4 92.1 91.1 944 597 779 | 747
LP++[13] 70.8 732 340 736 74.0 85.9 90.9 93.0 951 624 792 | 756
CLIP-LoRA [47] 71.4 728 379 849 714 82.7 91.0 93.7 952 638 811 | 774
MMA [42] 70.5 729 350 424 73.3 86.0 92.9 913 945 601 790 | 725
2SFS 71.1 737 398 855 71.5 85.9 92.6 940 954 660 820 | 785
Zero-Shot [33] 61.9 620 193 451 60.4 80.5 87.5 67.0  91.1 426 622 | 61.8
CoOp [52] (ctx=16) 63.2 67.1 240  68.7 66.2 75.6 88.8 879 930 553 750 | 695
CoCoOp [51] 65.2 67.8 173 585 62.0 81.1 89.8 746 932 523 716 | 66.7
TIP-Adapter-F [50] 65.8 683 288 715 67.6 80.9 88.6 889 946 580 751 | 716
CLIP-Adapter [10] 63.7 656 213 499 62.2 81.3 88.4 683 920 472 673 | 643
PLOT++ [2] 64.6 692 262 816  68.5 71.8 89.1 902 939 572 756 | 722
ViT-B/32  KgCoOp [43] 64.7 692 226 649 63.2 81.2 89.5 76.8 938 551 716 | 684
TaskRes [45] 66.1 667 231 707 66.7 76.7 86.7 790 906 570 682 | 683
MaPLe [16] 65.6 694 234 647 62.2 81.4 90.5 78.1 940 550 709 | 68.7
ProGrad [53] 65.2 69.6 248  63.7 66.4 79.2 89.4 875 932 559 734 | 698
LP++[13] 66.1 705 260 735 67.3 80.0 88.9 902 940 593 748 | 719
CLIP-LoRA [47] 66.5 703 277 856 68.3 75.6 86.3 90.1 943 603 765 | 729
MMA [42] 64.7 704 256 360 66.3 80.5 90.7 86.1 940 556 746 | 677
2SFS 66.0 714 306 826 704 80.2 89.4 91.0 951 631 774 | 743
Zero-Shot [33] 72.9 67.6 326 580 76.8 91.0 93.6 794 949 536 742 | 722
CoOp [52] (ctx=16) 74.9 731 436 759 833 88.7 94.6 959 965 639 828 | 794
CoCoOp [51] 71.0 747 410 747 79.7 91.3 94.9 89.8 971 649 826 | 789
TIP-Adapter-F [50] 77.1 741 474 814 823 91.2 94.0 955 965 644 839 | 807
CLIP-Adapter [10] 75.2 721 358 613 78.8 91.2 93.7 817 956 579 779 | 747
PLOT++ [50] 76.4 752 432 813 82.6 87.7 94.2 95.9 969 668 838 | 804
ViT-1/14 KgCoOp [43] 76.4 752 406 795 80.0 91.5 94.4 90.2 969 663 834 | 795
TaskRes [45] 77.1 749 425 766 83.6 90.7 94.4 90.3 965 654 80.1 | 793
MaPLe [16] 71.2 760 404 746 80.3 91.5 95.0 932 970 645 828 | 793
ProGrad [53] 76.5 750 446 793 83.8 90.6 94.8 956 968 663 836 | 80.6
LP++[13] 77.4 769 459  83.1 82.7 91.0 93.8 972 974 683 853 | 817
CLIP-LoRA [47] 71.9 76.7 489 864 852 89.6 93.9 974 972 704 864 | 827
MMA [42] 71.7 77.1 452 553 83.3 91.4 94.3 951 970 638 832 | 785
2SFS 71.3 715 520 867 849 90.9 95.0 975 974 711 869 | 834
ever, an additional intriguing direction to pursue is repre- 101 [1] a single «, tuned on a given dataset, may not be ideal
sented by tasks focusing on different challenges (e.g., the for others. To this aim, future works may integrate (or inves-
spatial ones of semantic segmentation, and the temporal one tigate) stopping criteria not requiring a validation set [28],
of action recognition), which may require different adapta- to dynamically understand or approximate, in an unsuper-
tion strategies. vised manner, when to switch between the two stages.

Validation-free stopping criterion. Finally, a core hyper-
parameter of our approach is «, regulating when to stop
with the feature extractor training (i.e., the first stage) and
start with the second one (i.e., classifier learning). As we
have shown empirically with Oxford Pets [32] and Food-



Table 10. All-to-all experiments with k = 8 shots, using ViT-B/16, ViT-B/32, and ViT-L/14. Formatting follows Tab. 2.

BACKBONE METHOD IMAGENET SUN AIR ESAT CARS FOOD PETS FLWR CAL DTD UCF | MEAN
Zero-Shot [33] 66.7 62.6 247 47.5 65.3 86.1 89.1 71.4 929 43.6 66.7 65.1
CoOp [52] (ctx=16) 70.6 719 385 77.1 79.0 82.7 91.3 94.9 94.5 64.8 80.0 76.8
CoCoOp [51] 70.8 715 324 69.1 70.4 87.0 93.3 86.3 94.9 60.1 75.9 73.8
TIP-Adapter-F [50] 71.7 735 395 81.3 78.3 86.9 91.8 94.3 95.2 66.7 82.0 78.3
CLIP-Adapter [10] 69.1 717 30.5 61.6 70.7 86.9 91.9 83.3 94.5 50.5 76.2 715
PLOT++ [2] 71.3 739 414 88.4 81.3 86.6 93.0 95.4 95.5 66.5 82.8 79.6

ViT-B/16 KgCoOp [43] 70.2 72.6 3438 73.9 72.8 87.0 93.0 91.5 95.1 65.6 80.0 76.0
TaskRes [45] 723 746 403 715 79.6 86.4 92.0 96.0 95.3 66.7 81.6 78.4
MaPLe [16] 71.3 732 338 82.8 71.3 87.2 93.1 90.5 95.1 63.0 795 76.4
ProGrad [53] 713 73.0 377 77.8 78.7 86.1 922 95.0 94.8 63.9 80.5 774
LP++[13] 72.1 75.1 390 78.2 76.4 86.8 91.8 95.2 95.5 67.7 819 782
CLIP-LoRA [47] 72.3 747 457 89.7 82.1 83.1 91.7 96.3 956 675 841 80.3
MMA [42] 71.9 747 389 69.7 76.8 86.4 92.9 94.6 95.6 669 82.9 774
2SFS 72.5 755 443 89.1 81.9 86.1 92.9 95.9 96.1 68.7 84.4 80.7
Zero-Shot [33] 61.9 620 193 45.1 60.4 80.5 87.5 67.0 91.1 42.6 62.2 61.8
CoOp [52] (ctx=16) 65.5 69.2  29.1 76.4 71.3 76.3 87.4 92.7 93.8 61.7 76.5 72.7
CoCoOp [51] 65.8 689 203 58.1 63.4 81.6 90.1 71.3 93.8 57.4 72.4 68.1
TIP-Adapter-F [50] 66.8 712 321 75.0 72.6 81.3 89.8 90.4 94.5 63.6 78.0 74.1
CLIP-Adapter [10] 64.2 693 235 55.2 65.4 81.5 89.3 78.0 93.9 50.8 73.0 67.6
PLOT++ [2] 66.2 71.0 317 87.1 73.5 78.2 88.4 93.8 94.4 62.9 79.1 75.1

ViT-B/32 KgCoOp [43] 65.1 69.5 247 66.2 65.0 81.7 90.3 83.1 94.5 61.1 74.7 70.5
TaskRes [45] 67.4 719 319 74.9 73.8 80.6 89.1 93.5 948 645 184 74.6
MaPLe [16] 66.3 703 254 79.0 63.7 81.9 90.9 81.1 94.4 59.8 75.0 71.6
ProGrad [53] 66.1 711 290 73.5 71.8 80.0 89.1 92.1 94.2 62.3 75.7 732
LP++[13] 67.1 722 303 78.8 71.2 81.5 89.3 92.4 94.6 64.2 78.4 74.5
CLIP-LoRA [47] 67.2 72.1  36.1 88.8 74.4 76.7 87.7 92.4 948 637  80.1 75.8
MMA [42] 66.7 722 296 56.2 70.4 81.0 91.0 90.7 94.6 64.4 78.7 72.3
2SFS 67.2 731 352 88.7 75.4 80.4 90.4 93.4 95.4 659  80.2 76.8
Zero-Shot [33] 72.9 67.6 326 58.0 76.8 91.0 93.6 79.4 94.9 53.6 74.2 722
CoOp [52] (ctx=16) 76.8 75.0 512 82.8 86.4 88.6 94.0 98.0 96.7 69.4 85.1 82.2
CoCoOp [51] 77.4 756 433 77.0 81.4 91.6 95.3 93.0 97.0 67.9 84.5 80.4
TIP-Adapter-F [50] 77.8 76.7 504 84.9 85.9 91.4 94.1 97.3 96.9 71.2 86.2 83.0
CLIP-Adapter [10] 75.7 759 407 67.9 81.6 91.4 94.3 92.3 96.8 63.8 82.8 785
PLOT++ [2] 71.8 7710 432 87.0 84.6 89.6 93.3 96.3 96.8 69.5 84.8 81.8

ViT-L/14 KgCoOp [43] 76.7 762 459 82.1 82.3 91.6 95.1 95.2 973 708 85.7 81.7
TaskRes [45] 719 76.0  51.1 81.1 85.7 91.1 94.5 96.7 96.9 69.4 85.6 82.4
MaPLe [16] 78.0 712 429 80.7 81.8 90.1 95.0 95.8 96.8 69.5 85.1 81.2
ProGrad [53] 71.7 76.1 499 83.6 86.2 90.8 95.1 97.8 96.7 69.9 85.4 82.7
LP++[13] 78.4 784 508 85.0 85.2 91.4 94.4 97.9 97.6 72.1 86.0 83.4
CLIP-LoRA [47] 78.5 780 575 90.0 88.7 89.7 94.2 98.0 97.0 722 883 84.7
MMA [42] 78.6 78.8  50.9 61.4 85.8 91.5 95.1 97.7 97.1 71.9 86.2 81.4
2SFS 78.6 79.2 57.6 89.8 88.2 91.4 95.2 98.3 97.2 742 884 85.3
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Figure 6. Breakpoints consistently emerging for UCF-101 [37] and EuroSAT [11], regardless of the PEFT technique used in our study.
The pattern appears particularly evident with EuroSAT (bottom).
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Figure 7. Breakpoint further confirmed for both LoRA [12] and BitFit [46] on ImageNet [34] and SUN397 [40]. For Layer Normalization,
we speculate that the more balanced data-to-parameter ratio, given the larger number of examples in these datasets and the smaller number
of parameters of LayerNorm, has a regularizing effect, which avoids breaking and leads to saturation.
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Figure 8. Understanding the failure cases of Sec. 5.3 through the lens of breakpoints. On Oxford Pets [32] and Food-101 [1], base accuracy
overfits or saturates right after degradation on novel accuracy, which leads the second stage of 2SFS to train a classifier on disrupted base
features since « is fixed. These visualizations suggest that o and M should be tuned explicitly for these benchmarks, which we avoid to
strive for an evaluation as realistic as possible.

Table 11. Experiments in base-to-novel generalization with the ViT-B/16 visual backbone k=4 shots per base class.

Average across datasets.

Method Base Novel ‘ HM
CLIP [33] 69.34 7422 ‘ 71.70
MMA [42]  80.13  78.57 | 74.90
2SFS 8464 7853 | 78.88
Oxford Flowers
Method Base Novel ‘ HM
CLIP [33] 72.08  77.80 ‘ 74.83
MMA [42]  91.07  75.07 | 82.30
2SFS 9494 7626 | 84.58
Food101
Method Base Novel ‘ HM
CLIP[33]  90.10 9122 ‘ 90.66
MMA [42]  89.77  91.10 | 90.43
2SFS 8891  91.40 | 90.14
DTD
Method Base  Novel | HM
CLIP[33] 5324  59.90 ‘ 56.37
MMA [42] 6350  63.57 | 63.53
2SFS 76.81 65.02 \ 70.42

ImageNet
Method Base Novel ‘ HM
CLIP [33] 7243 68.14 ‘ 70.22
MMA [42] 7537  70.10 | 72.64
2SFS 75.68 7027 | 72.87
Oxford Pets
Method Base Novel ‘ HM
CLIP [33] 91.17 9726 ‘ 94.12
MMA [42] 9130  97.07 | 94.10
2SFS 9458 9748 | 96.01
FGVC Aircraft
Method Base  Novel | HM
CLIP[33]  27.19  36.29 ‘ 31.09
MMA [42] 3197  34.03 | 32.97
2SFS 3936 3567 | 37.42
EuroSAT
Method Base  Novel | HM
CLIP[33] 5648  64.05 ‘ 60.03
MMA [42]  50.13  69.93 | 58.40
2SFS 9129 7510 | 82.41

Caltech101
Method Base Novel ‘ HM
CLIP[33]  96.84  94.00 ‘ 93.73
MMA [42] 9733 9457 | 9593
2SFS 98.13 9421 | 96.13
Stanford Cars
Method Base Novel ‘ HM
CLIP [33] 6337  74.89 ‘ 68.65
MMA [42] 7130  74.07 | 72.66
2SFS 7445 7598 | 7521
SUN397
Method Base Novel ‘ HM
CLIP[33] 6936  75.35 ‘ 72.23
MMA [42] 7937  78.53 | 78.95
2SFS 8023 7846 | 79.33
UCF101
Method Base Novel | HM
CLIP[33] 7053  77.50 ‘ 73.85
MMA [42]  80.13 7857 | 79.34
2SFS 84.64 78.53 \ 81.47




Table 12. Experiments in base-to-novel generalization with the ViT-B/16 visual backbone k=8 shots per base class.

Average across datasets.

Method Base Novel ‘ HM
CLIP[33] 6934 7422 ‘ 71.70
MMA [42] 8480  78.10 | 76.68
2SFS 86.37  78.58 \ 79.74
Oxford Flowers
Method Base Novel HM
CLIP [33] 72.08  77.80 ‘ 74.83
MMA [42] 9537 7543 84.24
2SFS 96.68  76.36 \ 85.33
Food101
Method Base  Novel | HM
CLIP [33] 90.10  91.22 | 90.66
MMA [42]  89.53  91.07 | 90.29
2SFS 89.02  91.36 \ 90.17
DTD
Method Base Novel ‘ HM
CLIP [33] 5324 59.90 ‘ 56.37
MMA [42] 77.07 64.47 70.21
2SFS 80.17  64.45 \ 71.46

ImageNet
Method Base  Novel | HM
CLIP[33] 7243  68.14 ‘ 70.22
MMA [42] 76.43 70.07 73.11
2SFS 7697  70.67 | 73.69
Oxford Pets
Method Base Novel HM
CLIP [33] 91.17 97.26 ‘ 94.12
MMA [42] 94.90 97.50 96.18
2SFS 94.95 97.80 \ 96.35
FGVC Aircraft
Method Base Novel | HM
CLIP [33] 27.19 36.29 31.09
MMA [42] 37.53 34.57 35.99
2SFS 42.96 36.39 ‘ 39.40
EuroSAT
Method Base Novel ‘ HM
CLIP [33] 56.48 64.05 ‘ 60.03
MMA [42] 5030  69.97 | 58.53
2SFS 93.33 75.09 ‘ 83.23

Caltech101
Method Base Novel ‘ HM
CLIP[33]  96.84  94.00 ‘ 93.73
MMA [42] 9777 9387 | 95.78
2SFS 98.13  94.18 | 96.11
Stanford Cars
Method Base Novel HM
CLIP[33]  63.37  74.89 ‘ 68.65
MMA [42]  75.00  74.80 | 74.90
2SFS 7899 7545 | 7118
SUN397
Method Base  Novel | HM
CLIP[33] 6936 7535 | 72.23
MMA [42]  80.73 7833 | 79.51
2SFS 8125 7876 | 79.99
UCF101
Method Base Novel ‘ HM
CLIP[33] 7053 77.50 ‘ 73.85
MMA [42]  84.80  78.10 | 81.31
2SFS 8637  78.58 | 8229

Table 13. Experiments in base-to-novel generalization with the ViT-B/32 visual backbone k=4 shots per base class.

Average across datasets.

Caltech101
Method Base  Novel | HM
CLIP [33] 94.06 94.00 94.03
MMA [42] 96.90 93.03 94.93
2SFS 97.16 93.52 ‘ 95.31
Stanford Cars
Method Base  Novel | HM

CLIP [33] 60.72  69.74 ‘ 64.92

MMA [42]  66.23 69.17 67.67

2SFS 69.22 70.84 ‘ 70.02
SUN397

Method Base Novel ‘ HM

CLIP [33] 69.80  73.01 ‘ 71.37

MMA [42]  77.37 76.40 76.88
2SFS 78.23 76.34 ‘ 77.27
UCF101
Method Base Novel ‘ HM

Method Base  Novel | HM
CLIP [33] 67.27 71.68 69.41
MMA [42] 77.20 7443 70.55
2SFS 82.04 74.44 ‘ 75.00
Oxford Flowers
Method Base  Novel | HM
CLIP [33] 72.36 73.69 ‘ 73.02
MMA [42] 87.03 70.83 78.10
2SFS 93.99 71.70 ‘ 81.35
Food101
Method Base Novel ‘ HM
CLIP [33] 85.30 86.89 ‘ 86.09
MMA [42] 85.03 86.40 85.71
2SFS 84.04 86.95 ‘ 85.47
DTD
Method Base Novel ‘ HM
CLIP [33] 54.17 58.21 ‘ 56.12
MMA [42] 6213 5770 | 59.83
2SFS 74.23 56.76 ‘ 64.33

CLIP[33]  69.08 7296 | 70.97
MMA [42] 7720  74.43

ImageNet
Method Base  Novel | HM
CLIP [33] 67.49 64.06 65.73
MMA [42] 69.77 65.63 67.64
2SFS 70.51 6591 | 68.13
Oxford Pets
Method Base Novel | HM
CLIP [33] 90.64 96.87 ‘ 93.65
MMA [42] 88.43 96.33 92.21
2SFS 92.50 95.25 ‘ 93.86
FGVC Aircraft
Method Base Novel ‘ HM
CLIP [33] 21.25 29.27 ‘ 24.62
MMA [42] 2527 2790 | 26.52
2SFS 33.11 30.23 ‘ 31.61
EuroSAT
Method Base Novel HM
CLIP[33]  55.14  69.77 ‘ 61.60
MMA [42] 4173  57.17 | 48.24
2SFS 87.91 68.35 ‘ 76.91

2SFS 82.04 74.44 ‘ 78.05




Table 14. Experiments in base-to-novel generalization with the ViT-B/32 visual backbone k=8 shots per base class.

Average across datasets. ImageNet Caltech101

Method Base Novel ‘ HM Method Base Novel ‘ HM Method Base Novel ‘ HM

CLIP[33] 6727  71.68 ‘ 69.41 CLIP[33] 6749  64.06 ‘ 65.73 CLIP[33] 9406  94.00 ‘ 94.03
MMA [42] 81.67 73.83 72.06 MMA [42] 71.03 65.17 67.97 MMA [42] 97.13 92.57 94.80
2SFS 8421 7462 | 75.88 2SFS 7139 66.24 | 68.72 2SFS 97.61  93.56 | 95.54

Oxford Flowers Oxford Pets Stanford Cars
Method Base  Novel | HM Method Base  Novel | HM Method Base  Novel | HM
CLIP [33] 72.36 73.69 ‘ 73.02 CLIP [33] 90.64 96.87 ‘ 93.65 CLIP [33] 60.72 69.74 ‘ 64.92
MMA [42] 92.97 71.63 80.92 MMA [42] 93.57 95.57 94.56 MMA [42] 69.83 69.80 69.81
2SFS 95.79 71.35 81.78 2SFS 92.79 95.58 94.16 2SFS 73.48 70.71 72.07
Food101 FGVC Aircraft SUN397
Method Base  Novel | HM Method Base Novel | HM Method Base  Novel | HM
CLIP [33] 85.30 86.89 ‘ 86.09 CLIP [33] 21.25 29.27 ‘ 24.62 CLIP [33] 69.80 73.01 ‘ 71.37
MMA [42] 85.03 86.53 85.77 MMA [42] 28.63 27.67 28.14 MMA [42] 78.83 76.10 77.44
2SFS 84.15 87.33 ‘ 85.71 2SFS 35.47 30.35 ‘ 32.71 2SFS 79.49 77.13 ‘ 78.29
DTD EuroSAT UCF101

Method Base Novel ‘ HM Method Base Novel HM Method Base Novel HM

CLIP [33] 54.17 58.21 ‘ 56.12 CLIP [33] 55.14 69.77 ‘ 61.60 CLIP [33] 69.08 72.96 ‘ 70.97
MMA [42] 7370  56.07 | 63.69 MMA [42]  41.80  57.20 | 48.30 MMA [42]  81.67  73.83 | 77.55
2SFS 75.85 55.23 ‘ 63.92 2SFS 94.18 68.24 ‘ 79.14 2SFS 84.21 74.62 ‘ 79.12

Table 15. Experiments in base-to-novel generalization with the ViT-L/14 visual backbone k=4 shots per base class.

Average across datasets. ImageNet Caltech101

Method Base  Novel | HM Method Base  Novel | HM Method Base  Novel | HM

CLIP [33] 76.18 80.08 ‘ 78.08 CLIP [33] 79.18 74.04 ‘ 76.53 CLIP [33] 95.61 95.41 ‘ 95.51
MMA [42] 82.70 81.60 80.25 MMA [42] 82.00 76.67 79.25 MMA [42] 97.30 97.30 97.30
2SFS 88.11 82.15 ‘ 82.82 2SFS 81.35 75.90 ‘ 78.53 2SFS 98.36 97.09 ‘ 97.72

Oxford Flowers Oxford Pets Stanford Cars
Method Base  Novel | HM Method Base Novel | HM Method Base  Novel | HM
CLIP [33] 80.34 83.05 81.67 CLIP [33] 93.78 96.53 95.14 CLIP [33] 74.56 84.65 79.29
MMA [42] 92.93 81.87 87.05 MMA [42] 94.93 98.47 96.67 MMA [42] 79.83 85.03 82.35
2SFS 97.94 81.77 ‘ 89.13 2SFS 96.46 98.56 ‘ 97.50 2SFS 82.50 85.11 ‘ 83.79
Food101 FGVC Aircraft SUN397
Method Base Novel ‘ HM Method Base Novel ‘ HM Method Base Novel ‘ HM
CLIP [33] 93.75 94.82 ‘ 94.28 CLIP [33] 37.52 44.21 ‘ 40.59 CLIP [33] 73.23 77.71 ‘ 75.40
MMA [42] 9370 9457 | 94.13 MMA [42] 4257 4240 | 42.48 MMA [42] 82.17 81.80 | 81.98
2SFS 93.11 94.76 ‘ 93.93 2SFS 51.58 44.57 ‘ 47.82 2SFS 8291 81.20 ‘ 82.05
DTD EuroSAT UCF101

Method Base Novel ‘ HM Method Base Novel ‘ HM Method Base Novel ‘ HM

CLIP [33] 59.14 67.87 ‘ 63.21 CLIP [33] 70.93 82.90 ‘ 76.45 CLIP [33] 79.94 79.66 ‘ 79.80
MMA [42] 6590 67.00 | 66.45 MMA [42] 7250 7220 | 7235 MMA [42] 8270  81.60 | 82.15
2SFS 80.86 70.29 ‘ 75.21 2SFS 92.92 67.15 ‘ 77.96 2SFS 88.11 82.15 ‘ 85.03




Table 16. Experiments in base-to-novel generalization with the ViT-L/14 visual backbone k=8 shots per base class.

Average across datasets. ImageNet Caltech101
Method Base Novel | HM Method Base  Novel | HM Method Base  Novel | HM
CLIP [33] 76.18 80.08 ‘ 78.08 CLIP [33] 79.18 74.04 ‘ 76.53 CLIP [33] 95.61 95.41 ‘ 95.51
MMA [42] 86.30 80.73 81.54 MMA [42] 82.63 76.80 79.61 MMA [42] 98.30 96.60 97.44
2SFS 88.28 82.24 \ 83.66 2SFS 82.43 76.46 \ 79.34 2SFS 98.52 96.62 \ 97.56
Oxford Flowers Oxford Pets Stanford Cars
Method Base  Novel | HM Method Base Novel | HM Method Base  Novel | HM
CLIP [33] 80.34 83.05 ‘ 81.67 CLIP [33] 93.78 96.53 ‘ 95.14 CLIP [33] 74.56 84.65 ‘ 79.29
MMA [42] 97.97 80.30 88.26 MMA [42] 95.77 98.33 97.03 MMA [42] 82.63 84.20 83.41
2SFS 98.67 81.21 ‘ 89.09 2SFS 96.15 98.47 ‘ 97.30 2SFS 85.51 84.97 ‘ 85.24
Food101 FGVC Aircraft SUN397
Method Base Novel ‘ HM Method Base Novel ‘ HM Method Base Novel ‘ HM
CLIP [33] 93.75 94.82 ‘ 94.28 CLIP [33] 37.52 44.21 ‘ 40.59 CLIP [33] 73.23 71.71 ‘ 75.40
MMA [42] 93.87 94.87 94.37 MMA [42] 46.50 41.23 43.71 MMA [42] 83.67 81.40 82.52
2SFS 93.81 94.76 ‘ 94.28 2SFS 55.00 44.49 ‘ 49.19 2SFS 84.25 81.84 ‘ 83.03
DTD EuroSAT UCF101

Method Base Novel ‘ HM Method Base Novel ‘ HM Method Base Novel ‘ HM

CLIP [33] 59.14 67.87 ‘ 63.21 CLIP [33] 70.93 82.90 ‘ 76.45 CLIP [33] 79.94 79.66 ‘ 79.80
MMA [42] 7813  69.90 | 73.79 MMA [42] 7273 7200 | 7236 MMA [42] 8630  80.73 | 83.42
2SFS 83.91 70.01 ‘ 76.33 2SFS 94.50 71.68 ‘ 81.53 2SFS 88.28 82.24 ‘ 85.15
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