Rethinking Few-Shot Adaptation of Vision-Language Models in Two Stages

Supplementary Material

This Supplementary Material aims to expand and complement the work's main body. We structure it as follows:

- Generalization to other PEFT techniques. Appendix A shows that the benefit of the two-stage design of 2SFS is not limited to Layer Normalization. In Appendix A.1 we experiment with LoRA, with particular emphasis on the relationship with CLIP-LoRA [47]; Appendix A.2 experiments with Prompt Learning techniques: CoOp [52] and "Independent Vision-Language Prompting" (IVLP);
- Additional visual backbones. Appendix B complements Sec. 5.1, by reporting results in the *base-to-novel* setting also for the ViT-B/32 and ViT-L/14 backbones;
- Robustness to shots availability. Appendix C reports the results of the main paper, with varying numbers of available shots. We further experiment with $k = \{4, 8\}$ shots;
- Hyperparameter analysis. Appendix D analyzes the impact of the total number of allowed iterations m;
- Extended preliminary analysis. Appendix E reports additional evidence for the preliminary observations of Sec. 3.2, with a focus on identifying the "best" and "worst" cases. We devote explanations for the slight failures of Fig. 5 with Oxford Pets [32] and Food-101 [1];
- Limitations are discussed in Appendix F.

A. 2SFS with different PEFT techniques

A.1. LoRA

We expand Sec. 5 reporting results of Tab. 1 and Tab. 2 when LoRA [12] is applied in the first stage. Note that 2SFS_{LORA} can be seen as a two-stage variant of the recently introduced CLIP-LoRA strategy, hence we are particularly interested in understanding the benefits, if any, relative to it. **Implementation details.** Following Sec. 5, we perform a sweep for α in [0.2, 0.8] with a step size of 0.1, only for the base-to-novel setting with the ViT-B/16 backbone, validating on ImageNet. We obtain an optimal value of $\alpha = 0.3$, which aligns with the behavior highlighted by Fig. 2 (*i.e.*, LoRA tends to saturate more quickly than LayerNorm). We transfer it to all other experiments in this Supplementary Material when 2SFS_{LORA} is specified. We strictly follow the CLIP-LoRA recipe for plugging low-rank modules in CLIP.

A.1.1. Base-to-novel generalization

Extended results for the base-to-novel setup are given in Tab. 3. We observe that, w.r.t. CLIP-LoRA, $2SFS_{LORA}$ provides a notable improvement, especially pronounced in the **Novel** metric (+3.02% on average) and, more in general, it boosts performance on 32 out of 33 {dataset, metric} combinations. Overall, these results take a step further in

confirming the hypothesis that the two-stage design is beneficial for other PEFT strategies, since $2SFS_{LORA}$ exhibits the 2nd greatest Harmonic Mean on average, only outperformed by MMA [42] among published works (excluding our own alternative $2SFS_{LaverNorm}$).

A.1.2. All-to-all adaptation

Tab. 4 reports results for the all-to-all scenario. Following Sec. 5.2, we experiment with ViT-B/16, ViT-B/32, and ViT-L/14, inheriting hyperparameters from the base-to-novel setup. Here, $2SFS_{LORA}$ outperforms, on average, all strategies for all backbones, including $2SFS_{LayerNorm}$. This further aligns with the evidence of Sec. 3.2, where LoRA is shown to incorporate more helpful knowledge to discriminate among available categories. Compared to CLIP-LoRA, $2SFS_{LORA}$ outperforms it in 27 out of 33 {dataset, backbone} combinations, further supporting the benefits of the two-stage design.

A.2. Prompt Learning

Inspired by "prefix tuning" [23] for Language Models, Prompt Learning has become arguably the most widely adopted approach to adapt VLMs [2, 15, 16, 36, 43, 51, 52] in recent years. We do, hence, explore here if 2SFS also successfully integrates with Prompt Learning techniques.

Implementation details. To do so, we focus on CoOp [52] and "Independent Vision-Language Prompting" (IVLP), a baseline introduced in [16]. We do not conduct any hyperparameter tuning for these PEFT methods, but we set $\alpha = 0.3$ as used with LoRA, simply leveraging prior knowledge that excessive Prompt Learning severely harms generalization [51]. To exactly compare with both approaches, we use the same batch size, optimizer setup, and number of epochs suggested in the original papers.¹ When switching to the second stage of 2SFS, we train the linear classifier with the same optimizer setup described in the main paper. **Results** with the ViT-B/16 backbone and k=16 shots are given in Tab. 5 (base-to-novel generalization). For all benchmarks, wrapping prompt learning approaches in the two-stage design improves the Harmonic Mean between seen/unseen semantic categories, providing further evidence to support our findings. The gap is particularly evident with CoOp (+3.56 overall HM), although also IVLP significantly benefits from this design (+1.23 overall HM). We also emphasize that the design of 2SFS is computationally friendlier than the original approaches: only the gradient w.r.t. the classifier is required for the second stage.

¹with the only exception of ImageNet, for which we only train for 10 epochs to save computational resources.

Table 3. Experiments in *base-to-novel* generalization with the ViT-B/16 visual backbone. All methods use k=16 shots per base class. "CLIP" refers to zero-shot performance with dataset-specific templates, e.g., "a photo of a {}, a type of flower" for Oxford Flowers. To highlight the benefits of the two-stage design, we report an additional line with the absolute improvement of $2SFS_{LORA}$ relative to its single-stage counterpart CLIP-LoRA [47]. In each table, the best performer is **bold**, and the second best is <u>underlined</u>.

Average	across	datasets	•
Method	Base	Novel	HM
CLIP [33]	69.34	74.22	71.70
CoOP [52]	82.69	63.22	71.66
CoCoOp [51]	80.47	71.69	75.83
MaPLe [16]	82.28	75.14	78.55
ProGrad [53]	82.48	70.75	76.16
KgCoOp [43]	80.73	73.60	77.00
CLIP-LoRA [47]	85.32	70.63	77.28
MMA [42]	83.20	76.80	<u>79.87</u>
2SFS _{LaverNorm}	85.55	75.48	80.20
2SFS _{LORA}	85.97	73.65	79.33
	+0.65	+3.02	+2.05

Oxford Flowers

Base

72.08

97.60

94.87

95.92

95.54

95.00

97.91

97.77

98.29

98.04

+0.13

Novel

77.80

59.67

71.75

72.46

71.87

74.73

68.61

75.93

76.17

70.95

+2.34

HM

74.83

74.06

81.71

82.56

82.03

83.65

80.68

85.48

85.83

82.32

+1.64

Method

CLIP [33]

CoOP [52]

CoCoOp [51]

MaPLe [16]

ProGrad [53]

KgCoOp [43]

MMA [42]

2SFS_{LORA}

CLIP-LoRA [47]

2SFS_{LayerNorm}

ImageNet Method HM Base Novel CLIP [33] 72.43 68.14 70.22 CoOp [52] 76.47 67.88 71.92 CoCoOp [51] 75.98 70.43 73.10 MaPLe [16] 76.66 70.54 73.47 ProGrad [53] 77.02 66.66 71.46 KgCoOp [43] 75.83 69.96 72.78 CLIP-LoRA [47] 77.58 68.76 72.91 MMA [42] 77.31 71.00 74.02 $2SFS_{\texttt{LayerNorm}}$ 77.71 70.99 74.20 $2SFS_{\text{LORA}}$ 77.70 71.60 74.53 +0.12+2.84+1.62

Oxford Pets

94.36

95.40

95.32

95.50

+1.14

FGVC Aircraft

95.71

98.07

97.82

97.13

+1.42

HM

94.12

94.47

96.43

96.58

96.33

96.18

95.03

96.72

96.55

96.31

+1.28

Method

CLIP [33]

CoOP [52]

CoCoOp [51]

MaPLe [16]

ProGrad [53]

KgCoOp [43]

 $2SFS_{\text{LayerNorm}}$

MMA [42]

 $2SFS_{LORA}$

CLIP-LoRA [47]

Method	Base	Novel	HM
CLIP [33]	96.84	94.00	95.40
CoOP [52]	98.00	89.81	93.73
CoCoOp [51]	97.96	93.81	95.84
MaPLe [16]	97.74	94.36	96.02
ProGrad [53]	98.02	93.89	95.91
KgCoOp [43]	97.72	94.39	96.03
CLIP-LoRA [47]	98.19	93.05	95.55
MMA [42]	98.40	94.00	96.15
2SFS _{LaverNorm}	98.71	94.43	96.52
2SFS _{LORA}	98.45	94.47	96.42
	+0.26	+1.42	+0.87

Caltech101

Stanford Cars

Base	Novel
91.17	97.26
93.67	95.29
95.20	97.69
95.43	97.76
95.07	97.63
94.65	97.76
	Base 91.17 93.67 95.20 95.43 95.07 94.65

CLIP-LoRA [47]

 $2SFS_{\text{LayerNorm}}$

MMA [42]

2SFS_{LORA}

Method Base Novel HM CLIP [33] 63.37 74.89 68.65 CoOP [52] 78.12 60.40 68.13 CoCoOp [51] 70.49 73.59 72.01 MaPLe [16] 72.94 74.00 73.47 ProGrad [53] 77.68 68.63 72.88 KgCoOp [43] 71.76 75.04 73.36 CLIP-LoRA [47] 83.93 65.54 73.60 MMA [42] 78.50 73.10 75.70 $2SFS_{\text{LayerNorm}}$ 82.50 74.80 78.46 $2SFS_{LORA}$ 83.87 70.64 76.69 -0.06 +5.10+3.09

SUN 397

Base

69.36

80.60

79.74

80.82

81.26

80.29

81.11

82.27

82.59

82.43

Novel

75.35

65.89

76.86

78.70

74.17

76.53

74.53

78.57

78.91

79.05

+4.52

HM

72.23

72.51

78.27 79.75

77.55

78.36

77.68

80.38

80.70

80.70

+3.02

Food 101

Method	Base	Novel	HM
CLIP [33]	90.10	91.22	90.66
CoOP [52]	88.33	82.26	85.19
CoCoOp [51]	90.70	91.29	90.99
MaPLe [16]	90.71	92.05	91.38
ProGrad [53]	90.37	89.59	89.98
KgCoOp [43]	90.50	91.70	91.09
CLIP-LoRA [47]	86.84	86.67	86.76
MMA [42]	90.13	91.30	90.71
2SFS _{LaverNorm}	89.11	91.34	90.21
2SFS _{LORA}	88.47	89.96	89.21
	+1.61	+3.29	+2.45

D	TD	

Method	Base	Novel	HM
CLIP [33]	53.24	59.90	56.37
CoOP [52]	79.44	41.18	54.24
CoCoOp [51]	77.01	56.00	64.85
MaPLe [16]	80.36	59.18	68.16
ProGrad [53]	77.35	52.35	62.45
KgCoOp [43]	77.55	54.99	64.35
CLIP-LoRA [47]	83.95	62.84	71.39
MMA [42]	83.20	65.63	<u>73.38</u>
2SFS _{LaverNorm}	84.60	65.01	73.52
2SFS _{LOBA}	84.53	63.53	72.54
	+0.58	+0.69	+1.15

Method	Base	Novel	HM
CLIP [33]	27.19	36.29	31.09
CoOP [52]	40.44	22.30	28.75
CoCoOp [51]	33.41	23.71	27.74
MaPLe [16]	37.44	35.61	36.50
ProGrad [53]	40.54	27.57	32.82
KgCoOp [43]	36.21	33.55	34.83
CLIP-LoRA [47]	50.10	26.03	34.26
MMA [42]	40.57	36.33	38.33
2SFS _{LayerNorm}	47.48	35.51	40.63
2SFS _{LORA}	51.00	31.37	38.85
	+0.90	+5.34	+4.59

EuroSAT

Method	Base	Novel	HM
CLIP [33]	56.48	64.05	60.03
CoOP [52]	92.19	54.74	68.69
CoCoOp [51]	87.49	60.04	71.21
MaPLe [16]	94.07	73.23	82.35
ProGrad [53]	90.11	60.89	72.67
KgCoOp [43]	85.64	64.34	73.48
CLIP-LoRA [47]	97.04	62.50	76.03
MMA [42]	85.46	82.34	83.87
2SFS _{LayerNorm}	96.91	67.09	79.29
2SFS _{LORA}	97.05	64.59	77.56
	+0.01	+2.09	+1.53

+1.32UCF101

Method	Base	Novel	HM
CLIP [33]	70.53	77.50	73.85
CoOP [52]	84.69	56.05	67.46
CoCoOp [51]	82.33	73.45	77.64
MaPLe [16]	83.00	78.66	80.77
ProGrad [53]	84.33	74.94	79.35
KgCoOp [43]	82.89	76.67	79.65
CLIP-LoRA [47]	87.52	72.74	79.45
MMA [42]	86.23	80.03	82.20
2SFS _{LayerNorm}	87.85	78.19	82.74
2SFS _{LORA}	88.59	76.82	82.28
	+1.07	+4.08	+2.83

Table 4. *All-to-all* experiments, where train/test categories coincide, with the ViT-B/16 (top), ViT-B/32 (middle), and ViT-L/14 (bottom) backbones. All methods use k = 16 shots per class. To highlight the benefits of the two-stage design, we report an additional line with the absolute improvement of $2SFS_{LoRA}$ relative to its single-stage counterpart CLIP-LoRA [47]. In each group, the best performer is marked by **bold text**; the second best is <u>underlined</u>.

BACKBONE	Method	IMAGENET	SUN	AIR	ESAT	CARS	FOOD	PETS	FLWR	CAL	DTD	UCF	MEAN
	Zero-Shot	66.7	62.6	24.7	47.5	65.3	86.1	89.1	71.4	92.9	43.6	66.7	65.1
	CoOp [52] (ctx=16)	71.9	74.9	43.2	85.0	82.9	84.2	92.0	96.8	95.8	69.7	83.1	80.0
	CoCoOp [51]	71.1	72.6	33.3	73.6	72.3	87.4	93.4	89.1	95.1	63.7	77.2	75.4
	TIP-Adapter-F [50]	73.4	76.0	44.6	85.9	82.3	86.8	92.6	96.2	95.7	70.8	83.9	80.7
	CLIP-Adapter [10]	69.8	74.2	34.2	71.4	74.0	87.1	92.3	92.9	94.9	59.4	80.2	75.5
	PLOT++ [2]	72.6	76.0	46.7	92.0	84.6	87.1	93.6	97.6	96.0	71.4	85.3	82.1
ViT-B/16	KgCoOp [43]	70.4	73.3	36.5	76.2	74.8	87.2	93.2	93.4	95.2	68.7	81.7	77.3
	TaskRes [45]	73.0	76.1	44.9	82.7	83.5	86.9	92.4	97.5	95.8	71.5	84.0	80.8
	MaPLe [16]	71.9	74.5	36.8	87.5	74.3	87.4	93.2	94.2	95.4	68.4	81.4	78.6
	ProGrad [53]	72.1	75.1	43.0	83.6	82.9	85.8	92.8	96.6	95.9	68.8	82.7	79.9
	LP++ [13]	73.0	76.0	42.1	85.5	80.8	87.2	92.6	96.3	95.8	71.9	83.9	80.5
	CLIP-LoRA [47]	73.6	76.1	54.7	92.1	<u>86.3</u>	84.2	92.4	98.0	96.4	72.0	86.7	<u>83.0</u>
	MMA [42]	73.2	76.6	44.7	85.0	80.2	87.0	93.9	96.8	95.8	72.7	85.0	81.0
	2SFS LayerNorm	<u>73.7</u>	77.0	50.0	<u>92.4</u>	85.4	86.1	93.7	97.7	96.4	<u>73.2</u>	86.6	82.9
	2SFS LORA	73.8	<u>76.9</u>	<u>54.6</u>	92.7	86.9	85.7	<u>93.8</u>	98.0	96.4	73.5	87.3	83.6
		+0.2	+0.8	-0.1	+0.6	+0.6	+1.5	+1.4	0.0	0.0	+1.5	+0.6	+0.6
	Zero-Shot	61.9	62.0	19.3	45.1	60.4	80.5	87.5	67.0	91.1	42.6	62.2	61.8
	CoOp [52] (ctx=16)	66.8	72.2	32.9	83.3	76.0	78.6	88.7	95.4	94.9	65.3	78.6	75.7
	CoCoOp [51]	66.0	69.8	22.6	70.4	64.6	81.9	91.0	82.5	94.3	59.7	75.3	70.7
	TIP-Adapter-F [50]	68.4	74.1	34.8	83.4	77.0	81.7	90.4	94.3	95.1	68.0	80.5	77.1
	CLIP-Adapter [10]	64.9	71.8	26.7	64.7	68.9	81.9	90.1	88.7	94.8	58.1	76.5	71.6
	PLOT++ [2]	67.4	73.4	36.3	91.1	77.4	79.7	89.1	<u>96.3</u>	94.9	67.0	81.5	77.6
ViT-B/32	KgCoOp [43]	65.4	71.0	23.7	70.1	67.3	81.7	90.8	86.1	94.4	65.1	77.5	72.1
	TaskRes [45]	68.2	73.6	37.0	77.7	78.0	81.4	89.4	95.5	<u>95.7</u>	68.3	80.6	76.9
	MaPLe [16]	66.7	72.0	28.0	83.3	66.9	82.1	91.7	89.0	95.1	63.4	77.3	74.1
	ProGrad [53]	66.9	73.2	33.3	81.0	76.1	80.1	89.3	95.1	95.0	65.8	79.6	75.9
	LP++ [13]	68.1	74.0	34.3	82.8	75.2	81.8	90.5	93.9	95.0	67.8	80.1	76.7
	CLIP-LoRA [47]	<u>68.4</u>	74.0	44.9	91.8	79.7	78.2	88.8	96.2	95.2	68.2	82.8	78.9
	MMA [42]	68.0	74.0	34.0	80.1	73.5	81.4	<u>91.5</u>	94.3	95.6	68.9	81.7	76.7
	2SFS LayerNorm	<u>68.4</u>	74.8	40.2	<u>92.1</u>	80.2	80.8	90.3	<u>96.3</u>	95.8	70.4	82.3	<u>79.2</u>
	2SFS LORA	68.6	<u>74.5</u>	<u>44.4</u>	92.2	81.3	80.2	90.0	96.4	<u>95.7</u>	<u>69.6</u>	<u>82.5</u>	79.6
		+0.2	+0.5	-0.5	+0.4	+1.6	+2.0	+1.2	+0.2	+0.5	+1.4	-0.3	+0.7
	Zero-Shot	72.9	67.6	32.6	58.0	76.8	91.0	93.6	79.4	94.9	53.6	74.2	72.2
	CoOp [52] (ctx=16)	78.2	77.5	55.2	88.3	89.0	89.8	94.6	99.1	97.2	74.4	87.3	84.6
	CoCoOp [51]	77.8	76.7	45.2	79.8	82.7	91.9	95.4	95.3	97.4	71.4	85.2	81.7
	TIP-Adapter-F [50]	79.3	79.6	55.8	86.1	88.1	91.6	94.6	98.3	<u>97.5</u>	74.0	87.4	84.8
	CLIP-Adapter [10]	76.4	78.0	46.4	75.8	83.8	91.6	94.3	97.3	97.3	71.3	86.1	81.7
	PLOT++ [2]	78.6	79.1	44.1	92.2	87.2	90.2	93.6	98.8	<u>97.5</u>	75.0	87.1	83.9
ViT-L/14	KgCoOp [43]	76.8	76.7	47.5	83.6	83.2	91.7	95.3	96.4	97.4	73.6	86.4	82.6
	TaskRes [45]	78.1	76.9	55.0	84.3	87.6	91.5	94.7	97.8	97.3	74.4	86.6	84.0
	MaPLe [16]	78.4	78.8	46.3	85.4	83.6	92.0	95.4	97.4	97.2	72.7	86.5	83.1
	ProGrad [53]	78.4	78.3	55.6	89.3	88.8	90.8	94.9	98.7	<u>97.5</u>	73.7	87.7	84.9
	LP++ [13]	79.3	79.7	54.6	89.3	87.7	91.7	94.9	98.5	97.4	76.1	88.1	85.2
	CLIP-LoRA [47]	79.6	79.4	<u>66.2</u>	<u>93.1</u>	<u>90.9</u>	89.9	94.3	99.0	97.3	76.5	<u>89.9</u>	86.9
	MMA [42]	79.9	80.2	56.4	/6.3	88.0	92.0	95.5	98.4	97.6	/5.8	88.0	84.4
	23F3 LayerNorm	79.4	80.3	64.1	92.9	90.3	91.1	95.5	99.1	97.5	78.0	89.5	<u>8/.1</u> 97.4
	23F3 LORA	<u>/9./</u> +0.1	80.7	00.5	93.2	91.2	90.8	y5.5	99.0	97.5	11.2	90.3	87.4
		± 0.1	+1.5	± 0.5	± 0.1	+0.3	+0.9	+1.2	0.0	+0.2	± 0.7	± 0.4	+0.5

B. Base-to-novel generalization with different backbones

comparison with the best competitor MMA [42] and expand the experimental evaluation to the ViT-B/32 and ViT-L/14 backbones further.

This Appendix complements Sec. 5.1, where results are given for the ViT-B/16 backbone mimicking the experimental setup of [16, 42]. Specifically, here we focus on the

Implementation Details. To align with Sec. 5.1, we use layer normalization in the first stage as in the main body of

Table 5. Direct comparison between established prompt learning approaches (CoOp [52] and IVLP [16]) and their behavior when wrapped in the Two-Stage design of 2SFS. We examine the *base-to-novel* setting with ViT-B/16 and k=16 shots per class.

Average across datasets.				
Method	Base	Novel	HM	
CoOp [52]	82.69	63.22	71.66	
2SFS _{CoOp}	83.49	68.27	75.12	
IVLP	84.21	71.79	77.51	
2SFS IVLP	84.53	73.69	78.74	
Oxford Flowers				
Method	Base	Novel	HM	
CoOp [52]	97.60	59.67	74.06	
2SFS coop	98.16	69.46	81.35	
IVLP	97.97	72.10	83.07	
2SFS IVLP	98.1	72.93	83.66	
Food 101				
Method	Base	Novel	HM	
CoOp [52]	88.33	82.26	85.19	
2SFS _{CoOp}	88.06	88.68	88.37	
IVLP	89.37	90.30	89.83	
2SFS IVLP	89.45	91.51	90.47	
	DTI)		
Method	Base	Novel	HM	
CoOp [52]	79.44	41.18	54.24	
2SFS _{CoOp}	81.40	49.11	61.27	
IVLP	82.40	56.20	66.82 65.32	
2SFS IVLP	83.45	53.66		

the paper, and make no hyperparameter changes. Results for these backbones are not available in the official article of [42], hence we used the open-source implementation of the authors with no modifications (the repository already integrates with different CLIP variants) as done for the allto-all experiments of Sec. 5.2.

Results are given in Tab. 6 for ViT-B/32 and in Tab. 7 for ViT-L/14. For both backbones, 2SFS largely outperforms MMA on average, exhibiting larger improvements than those emerging with the ViT-B/16 visual encoder (+1.70% and +1.83%, respectively), confirming that the effective-ness of 2SFS does not depend on a specific backbone.

C. Varying Shots

In Sec. 5 of the main body, results are given for the most popular FSA scenario in which k=16 shots are available per category. Here, we test the robustness of 2SFS in extreme data scarcity, working with both k=4 and k=8 shots for both all-to-all and base-to-novel cases. The results are discussed below.

Base-to-novel generalization. In line with Appendix B, we focus on the comparison with MMA [42]. We experiment with all backbones, and report results in Tab. 11 and Tab. 12

for ViT-B/16, Tab. 13 and Tab. 14 for ViT-B/32, and Tab. 15 and Tab. 16 for ViT-L/14, with 4 and 8 shots, respectively.²

On average, 2SFS outperforms MMA for all backbones and all shots setups. Importantly, we observe that the performance gap increases as the shots decrease, up to large gaps such as +3.98% and +4.45% HM with ViT-B/16 and ViT-B/32 using 4 shots. We speculate this behavior stems from the reduced amount of learnable parameters of 2SFS, which better accommodates a smaller number of examples. To ground the discussion in some numbers: summing up LayerNorm instances totals around 61k parameters for ViT-B backbones, while MMA introduces 674k new parameters. All-to-all adaptation. Results for the all-to-all setup are given in Tab. 9 and Tab. 10 for 4 and 8 shots. We include numbers from all 11 competitors of Sec. 5.2, following the reported results of [47], and reproducing when unavailable. Also in this case, 2SFS outperforms all competitors on average for all {backbones, shots} combinations.

In summary, looking at both scenarios, 2SFS appears to be a stronger approach w.r.t. to the comparison suite, regard-

²Please note that results for CoOp, CoCoOp, ProGrad, and KgCoOp with the ViT-B/16 backbone and $k \in \{4, 8\}$ are given in the supplementary material of [43], which we omit to avoid excessively dense tables. 2SFS largely outperforms all methods with available results.

Table 6. Experiments in *base-to-novel* generalization, with the ViT-B/32 visual backbone and k = 16 shots per base category, focusing on the comparison with MultiModal Adapter (MMA) [42]. "CLIP" refers to zero-shot performance with dataset-specific templates, *e.g.*, "*a photo of a* {}, *a type of flower*" for Oxford Flowers. Formatting follows Tab. 1.

Average across datasets.				ImageNet					Caltech101				
Method	Base	Novel	HM	· –	Method	Base	Novel	HM	•	Method	Base	Novel	HM
CLIP [33] MMA [42]	67.27 78.69	71.68 71.04	69.41 74.67	_	CLIP [33] MMA [42]	67.49 72.53	64.06 65.77	65.73 68.98		CLIP [33] MMA [42]	94.06 97.20	94.00 92.63	94.03 94.86
2SFS	82.32	71.23	76.37		2SFS	72.52	66.62	69.44		2SFS	97.83	93.30	95.51
0	xford F	lowers				Oxford	Pets		Stanford Cars				
Method	Base	Novel	HM		Method	Base	Novel	HM	-	Method	Base	Novel	HM
CLIP [33] MMA [42]	72.36 95.50	73.69 71.57	73.02 81.82		CLIP [33] MMA [42]	90.64 93.77	96.87 96.30	93.65 95.02		CLIP [33] MMA [42]	60.72 73.73	69.74 69.27	64.92 71.43
2SFS	96.64	70.02	81.20		2SFS	93.18	95.56	94.35		2SFS	78.21	70.30	74.04
	Food 1	101			FGVC Aircraft					SUN 397			
Method	Base	Novel	HM	. <u>-</u>	Method	Base	Novel	HM	-	Method	Base	Novel	HM
Method CLIP [33] MMA [42]	Base 85.30 85.77	Novel 86.89 87.13	HM 86.09 86.44		Method CLIP [33] MMA [42]	Base 21.25 31.77	Novel 29.27 28.73	HM 24.62 30.17	-	Method CLIP [33] MMA [42]	Base 69.80 80.27	Novel 73.01 76.57	HM 71.37 78.38
Method CLIP [33] MMA [42] 2SFS	Base 85.30 85.77 84.75	Novel 86.89 87.13 87.37	HM 86.09 86.44 86.04	· -	Method CLIP [33] MMA [42] 2SFS	Base 21.25 31.77 39.12	Novel 29.27 28.73 30.85	HM 24.62 30.17 34.50	-	Method CLIP [33] MMA [42] 2SFS	Base 69.80 80.27 81.11	Novel 73.01 76.57 78.02	HM 71.37 78.38 79.53
Method CLIP [33] MMA [42] 2SFS	Base 85.30 85.77 84.75 DTI	Novel 86.89 87.13 87.37	HM 86.09 86.44 86.04		Method CLIP [33] MMA [42] 2SFS	Base 21.25 31.77 39.12 EuroS.	Novel 29.27 28.73 30.85	HM 24.62 30.17 34.50	!	Method CLIP [33] MMA [42] 2SFS	Base 69.80 80.27 81.11 UCF1	Novel 73.01 76.57 78.02 01	HM 71.37 78.38 79.53
Method CLIP [33] MMA [42] 2SFS Method	Base 85.30 85.77 84.75 DTI Base	Novel 86.89 87.13 87.37 O Novel	HM 86.09 86.44 86.04		Method CLIP [33] MMA [42] 2SFS Method	Base 21.25 31.77 39.12 EuroSA Base	Novel 29.27 28.73 30.85 AT Novel	HM 24.62 30.17 34.50 HM	- - -	Method CLIP [33] MMA [42] 2SFS Method	Base 69.80 80.27 81.11 UCF1 Base	Novel 1 73.01 76.57 1 78.02 0 1 Novel Novel 1	HM 71.37 78.38 79.53 HM
Method CLIP [33] MMA [42] 2SFS Method CLIP [33] MMA [42]	Base 85.30 85.77 84.75 DTI Base 54.17 79.50	Novel 86.89 87.13 87.37 O Novel 58.21 57.00	HM 86.09 86.44 86.04 86.04 1 1 1 1 1 1 1 1 1 1 1 1 1		Method CLIP [33] MMA [42] 2SFS Method CLIP [33] MMA [42]	Base 21.25 31.77 39.12 EuroS. Base 55.14 71.83	Novel 29.27 28.73 30.85 AT Novel 69.77 62.97	 HM 24.62 30.17 34.50 HM 61.60 67.11 	- - - -	Method CLIP [33] MMA [42] 2SFS Method CLIP [33] MMA [42]	Base 69.80 80.27 81.11 UCF1 Base 69.08 83.77	Novel 73.01 76.57 78.02 01 Novel 72.96 73.47	HM 71.37 78.38 79.53 79.53 HM 70.97 78.28

Table 7. Experiments in *base-to-novel* generalization, with the ViT-L/14 visual backbone and k = 16 shots per base category, focusing on the comparison with MultiModal Adapter (MMA) [42]. "CLIP" refers to zero-shot performance with dataset-specific templates, *e.g.*, "*a photo of a* {}, *a type of flower*" for Oxford Flowers. Formatting follows Tab. 1.

Average across datasets.								
Method	Base	Novel	HM					
CLIP [33]	76.18	80.08	78.08					
MMA [42]	85.70	79.06	82.25					
2SFS	89.05	79.64	84.08					
Oxford Flowers								
Method	Base	Novel	HM					
CLIP [33]	80.34	83.05	81.67					
MMA [42]	99.00	80.20	88.61					
2SFS	98.99	80.73	88.93					
	Food 1	101						
Method	Base	Novel	HM					
CLIP [33]	93.75	94.82	94.28					
MMA [42]	94.23	95.10	94.66					
2SFS	93.59	94.93	94.26					
DTD								
Method	Base	Novel	HM					
CLIP [33]	59.14	67.87	63.21					
MMA [42]	85.23	70.77	77.33					
2SFS	87.35	70.73	78.17					

ImageNet									
Method	Base	Novel	HM						
CLIP [33]	79.18	74.04	76.53						
MMA [42]	83.17	76.73	79.82						
2SFS	83.11	76.98	79.93						
	Oxford Pets								
Method	Base	Novel	HM						
CLIP [33]	93.78	96.53	95.14						
MMA [42]	96.23	98.70	97.45						
2SFS	96.74	98.64	97.68						
F	GVC A	ircraft							
Method	Base	Novel	HM						
CLIP [33]	37.52	44.21	40.59						
MMA [42]	50.00	42.47	45.93						
2SFS	59.76	43.59	50.41						
	EuroSAT								
Method	Base	Novel	HM						
CLIP [33]	70.93	82.90	76.45						
MMA [42]	77.33	62.77	69.29						
2SFS	98.41	64.69	78.06						

	Caltech101								
Method	Base	Novel	HM						
CLIP [33]	95.61	95.41	95.51						
MMA [42]	98.60	95.97	97.27						
2SFS	98.82	96.69	97.74						
	Stanford Cars								
Method	Base	Novel	HM						
CLIP [33]	74.56	84.65	79.29						
MMA [42]	85.27	83.80	84.53						
2SFS	87.46	84.56	85.99						
SUN 397									
Method	Base	Novel	HM						
Method CLIP [33]	Base 73.23	Novel 77.71	HM 75.40						
Method CLIP [33] MMA [42]	Base 73.23 85.03	Novel 77.71 81.77	HM 75.40 83.37						
Method CLIP [33] MMA [42] 2SFS	Base 73.23 85.03 85.57	Novel 77.71 81.77 82.24	HM 75.40 83.37 83.87						
Method CLIP [33] MMA [42] 2SFS	Base 73.23 85.03 85.57 UCF1	Novel 77.71 81.77 82.24 01	HM 75.40 83.37 83.87						
Method CLIP [33] MMA [42] 2SFS Method	Base 73.23 85.03 85.57 UCF1 Base	Novel 77.71 81.77 82.24 01 Novel	HM 75.40 83.37 83.87 HM						
Method CLIP [33] MMA [42] 2SFS Method CLIP [33]	Base 73.23 85.03 85.57 UCF1 Base 79.94	Novel 77.71 81.77 82.24 01 Novel 79.66	HM 75.40 83.37 83.87 HM 79.80						
Method CLIP [33] MMA [42] 2SFS Method CLIP [33] MMA [42]	Base 73.23 85.03 85.57 UCF1 Base 79.94 88.60	Novel 77.71 81.77 82.24 01 Novel 79.66 81.37	HM 75.40 83.37 83.87 HM 79.80 84.83						

М	Base	Novel	HM
M = 100	77.55	70.50	73.86
M = 300	77.71	70.99	74.20
M = 500	77.35	71.16	74.12

Table 8. Sweep on $M \in \{100, 300, 500\}$ when $\alpha = 0.6$ on the ImageNet validation set and CLIP ViT-B/16.

less of how many shots are available. Importantly, it does so by (i) not employing any external source of knowledge (such as LLMs to generate descriptions or Image Generators to craft new examples [4]), (ii) avoiding the usage of well-engineered templates for each dataset, which are likely to be unavailable in practice, and (iii) only leveraging a single template "*a photo of a* {}", in contrast to an ensemble of templates [17]. We speculate, however, that such orthogonal techniques may further improve 2SFS.

D. Total gradient steps allowed

This Appendix briefly analyzes the impact of increasing or reducing the total number of iterations m. For simplicity, we stick to the ViT-B/16 backbone and the ImageNet validation set. Recall that in Sec. 5, the total number of iterations is defined as $m = M \times k$, where, in our case, M = 300 and k is the number of shots. M was chosen so to match the number of gradient steps performed on ImageNet with ≈ 10 epochs (constant mini-batch size of 32, 16 shots for all categories). In essence, this means that the budget is expressed in terms of a constant number of gradient steps rather than epochs, following [47]. Here, we analyze the impact of varying M when $\alpha = 0.6$ as in Sec. 5. Results are given in Tab. 8. We observe that M = 100 likely allocates insufficient compute for learning a good feature extractor in the first stage (lowest "Novel" metric). In contrast, M = 300 and M = 500 exhibit more comparable behaviors, which leads to choosing M = 300 considering the reduced overall runtime.

E. Extended preliminary analysis

Here, we aim to enrich the preliminary analysis conducted in Sec. 3.2. Recall that Sec. 3.2 introduces the natural emergence of two distinct stages when training CLIP ViT-B/16 with three different PEFT techniques in the low-data regime of FSA, and does so by visualizing the learning dynamics on DTD [3] and FGVC Aircraft [29]. First, we show that such a dynamic is not limited to those datasets. Second, we identify a *saturating* behavior of Layer Normalization, which we link to the data-to-parameter ratio. Finally, we focus on Oxford Pets [32] and Food-101 [1], which were the only datasets (out of 11) leading to a slight performance degradation during the ablation study of Sec. 5.3. **Consistent behaviors.** Fig. 6 shows that analogous and consistent patterns emerge also for UCF-101 [37] and EuroSAT [11] for all the PEFT techniques of our study. Particularly with EuroSAT, this behavior emerges to the extreme, with sharp breakpoints. In line with Sec. 3.2, BitFit tends to "break" earlier than both LoRA and LayerNorm.

Saturating behaviors. Fig. 7 shows consistent breakpoints for LoRA and BitFit further, displaying SUN397 [40] and ImageNet [34]. These two datasets have a trait in common w.r.t. the rest of the evaluation suite: a much larger label space. In FSA, where samples are constant per category, this inevitably entails a larger amount of examples. In parallel, LayerNorm instances total a reduced number of parameters w.r.t. to LoRA and BitFit (61k, 184k, 125k, respectively). We speculate that the more balanced data-to-parameter ratio of LayerNorm for these larger datasets has a regularizing effect, which avoids breaking and reaches a behavior similar to saturation, where the novel class accuracy remains constant.

Unexpected behaviors. Fig. 8 depicts the learning dynamics on Food-101 [1] and Oxford Pets [32]. These were the only two datasets where including a second stage did not appear beneficial in Fig. 5 of the main body. From the dynamics, the reason is evident: base and novel accuracy break together. For both datasets, *base* accuracy either decreases or saturates right after the breakpoint (pink line), implying overfitting since training data are available for base categories only. This suggests that α and M should be tailored to these datasets, to avoid training a classifier on overfitted features. However, we consider it fairer to transfer hyperparameters across datasets since, in practice, no annotated data except for the shots should be available in FSA, which raises concerns about the feasibility of tuning hyperparameters per dataset.

F. Limitations

In this work, we build on the finding that PEFT techniques learn good task-level features to design a simple and effective strategy for few-shot adaptation. For completeness, we identify and report three limitations of our work, which we hope can help construct future works.

Evaluating outside of our suite. While we successfully experiment with a variety of backbones (*i.e.*, ViT-B/16, ViT-B/32, ViT-L/14), datasets (*i.e.*, 11 different benchmarks), settings (*i.e.*, base-to-novel, all-to-all), PEFT techniques (*i.e.*, LayerNorm tuning and LoRA), and data availability conditions (*i.e.*, 4, 8, and 16 shots), as per most empirical observations, our results might not extend when tested with other (or future) PEFT strategies and on different benchmarks or additional models.

Expanding the variety of tasks. Our work focuses on downstream classification, following the established and recent field literature [2, 10, 16, 42, 43, 45, 47, 50–53]. How-

BACKBONE	Метнор	IMAGENET	SUN	AIR	ESAT	CARS	FOOD	PETS	FLWR	CAL	DTD	UCF	MEAN
	Zero-Shot [33]	66.7	62.6	24.7	47.5	65.3	86.1	89.1	71.4	92.9	43.6	66.7	65.1
	CoOp [52] (ctx=16)	68.8	69.7	30.9	69.7	74.4	84.5	92.5	92.2	94.5	59.5	77.6	74.0
	CoCoOp [51]	70.6	70.4	30.6	61.7	69.5	86.3	92.7	81.5	94.8	55.7	75.3	71.7
	TIP-Adapter-F [50]	70.7	70.8	35.7	76.8	74.1	86.5	91.9	92.1	94.8	59.8	78.1	75.6
	CLIP-Adapter [10]	68.6	68.0	27.9	51.2	67.5	86.5	90.8	73.1	94.0	46.1	70.6	67.7
	PLOT++ [2]	70.4	71.7	35.3	83.2	76.3	86.5	92.6	92.9	95.1	62.4	79.8	76.9
ViT-B/16	KgCoOp [43]	69.9	71.5	32.2	71.8	69.5	86.9	92.6	87.0	95.0	58.7	77.6	73.9
	TaskRes [45]	71.0	72.7	33.4	74.2	76.0	86.0	91.9	85.0	95.0	60.1	76.2	74.7
	MaPLe [16]	70.6	71.4	30.1	69.9	70.1	86.7	93.3	84.9	95.0	59.0	77.1	73.5
	ProGrad [53]	70.2	71.7	34.1	69.6	75.0	85.4	92.1	91.1	94.4	59.7	77.9	74.7
	LP++ [13]	70.8	<u>73.2</u>	34.0	73.6	74.0	85.9	90.9	93.0	95.1	62.4	79.2	75.6
	CLIP-LoRA [47]	71.4	72.8	<u>37.9</u>	<u>84.9</u>	<u>77.4</u>	82.7	91.0	<u>93.7</u>	<u>95.2</u>	<u>63.8</u>	<u>81.1</u>	<u>77.4</u>
	MMA [42]	70.5	72.9	35.0	42.4	73.3	86.0	<u>92.9</u>	91.3	94.5	60.1	79.0	72.5
	2SFS	<u>71.1</u>	73.7	39.8	85.5	77.5	85.9	92.6	94.0	95.4	66.0	82.0	78.5
	Zero-Shot [33]	61.9	62.0	19.3	45.1	60.4	80.5	87.5	67.0	91.1	42.6	62.2	61.8
	CoOp [52] (ctx=16)	63.2	67.1	24.0	68.7	66.2	75.6	88.8	87.9	93.0	55.3	75.0	69.5
	CoCoOp [51]	65.2	67.8	17.3	58.5	62.0	81.1	89.8	74.6	93.2	52.3	71.6	66.7
	TIP-Adapter-F [50]	65.8	68.3	28.8	71.5	67.6	80.9	88.6	88.9	94.6	58.0	75.1	71.6
	CLIP-Adapter [10]	63.7	65.6	21.3	49.9	62.2	81.3	88.4	68.3	92.0	47.2	67.3	64.3
	PLOT++ [2]	64.6	69.2	26.2	81.6	68.5	77.8	89.1	90.2	93.9	57.2	75.6	72.2
ViT-B/32	KgCoOp [43]	64.7	69.2	22.6	64.9	63.2	81.2	89.5	76.8	93.8	55.1	71.6	68.4
	TaskRes [45]	<u>66.1</u>	66.7	23.1	70.7	66.7	76.7	86.7	79.0	90.6	57.0	68.2	68.3
	MaPLe [16]	65.6	69.4	23.4	64.7	62.2	81.4	<u>90.5</u>	78.1	94.0	55.0	70.9	68.7
	ProGrad [53]	65.2	69.6	24.8	63.7	66.4	79.2	89.4	87.5	93.2	55.9	73.4	69.8
	LP++ [13]	66.1	70.5	26.0	73.5	67.3	80.0	88.9	<u>90.2</u>	94.0	59.3	74.8	71.9
	CLIP-LoRA [47]	66.5	70.3	27.7	85.6	68.3	75.6	86.3	90.1	94.3	<u>60.3</u>	76.5	72.9
	MMA [42]	64.7	70.4	25.6	36.0	66.3	80.5	90.7	86.1	94.0	55.6	74.6	67.7
	2SFS	66.0	71.4	30.6	<u>82.6</u>	70.4	80.2	89.4	91.0	95.1	63.1	77.4	74.3
	Zero-Shot [33]	72.9	67.6	32.6	58.0	76.8	91.0	93.6	79.4	94.9	53.6	74.2	72.2
	CoOp [52] (ctx=16)	74.9	73.1	43.6	75.9	83.3	88.7	94.6	95.9	96.5	63.9	82.8	79.4
	CoCoOp [51]	77.0	74.7	41.0	74.7	79.7	91.3	94.9	89.8	97.1	64.9	82.6	78.9
	TIP-Adapter-F [50]	77.1	74.1	47.4	81.4	82.3	91.2	94.0	95.5	96.5	64.4	83.9	80.7
	CLIP-Adapter [10]	75.2	72.1	35.8	61.3	78.8	91.2	93.7	81.7	95.6	57.9	77.9	74.7
	PLOT++ [50]	76.4	75.2	43.2	81.3	82.6	87.7	94.2	95.9	96.9	66.8	83.8	80.4
ViT-L/14	KgCoOp [43]	76.4	75.2	40.6	79.5	80.0	91.5	94.4	90.2	96.9	66.3	83.4	79.5
	TaskRes [45]	77.1	74.9	42.5	76.6	83.6	90.7	94.4	90.3	96.5	65.4	80.1	79.3
	MaPLe [16]	77.2	76.0	40.4	74.6	80.3	91.5	95.0	93.2	97.0	64.5	82.8	79.3
	ProGrad [53]	76.5	75.0	44.6	79.3	83.8	90.6	94.8	95.6	96.8	66.3	83.6	80.6
	LP++ [13]	77.4	76.9	45.9	83.1	82.7	91.0	93.8	97.2	97.4	68.3	85.3	81.7
	CLIP-LoRA [47]	77.9	76.7	48.9	86.4	85.2	89.6	93.9	97.4	97.2	70.4	86.4	82.7
	MMA [42]	77.7	77.1	45.2	55.3	83.3	91.4	94.3	95.1	97.0	63.8	83.2	78.5
	2SFS	77.3	77.5	52.0	86.7	<u>84.9</u>	90.9	95.0	97.5	97.4	71.1	86.9	83.4

Table 9. All-to-all experiments with $\mathbf{k} = \mathbf{4}$ shots, using ViT-B/16, ViT-B/32, and ViT-L/14. Formatting follows Tab. 2.

ever, an additional intriguing direction to pursue is represented by tasks focusing on different challenges (e.g., the

101 [1] a single α , tuned on a given dataset, may not be ideal for others. To this aim, future works may integrate (or investigate) stopping criteria not requiring a validation set [28], to dynamically understand or approximate, in an unsupervised manner, when to switch between the two stages.

spatial ones of semantic segmentation, and the temporal one of action recognition), which may require different adaptation strategies. Validation-free stopping criterion. Finally, a core hyper-

parameter of our approach is α , regulating when to stop with the feature extractor training (i.e., the first stage) and start with the second one (i.e., classifier learning). As we have shown empirically with Oxford Pets [32] and Food-

BACKBONE	Метнор	IMAGENET	SUN	AIR	ESAT	CARS	FOOD	PETS	FLWR	CAL	DTD	UCF	MEAN
	Zero-Shot [33]	66.7	62.6	24.7	47.5	65.3	86.1	89.1	71.4	92.9	43.6	66.7	65.1
	CoOp [52] (ctx=16)	70.6	71.9	38.5	77.1	79.0	82.7	91.3	94.9	94.5	64.8	80.0	76.8
	CoCoOp [51]	70.8	71.5	32.4	69.1	70.4	87.0	93.3	86.3	94.9	60.1	75.9	73.8
	TIP-Adapter-F [50]	71.7	73.5	39.5	81.3	78.3	86.9	91.8	94.3	95.2	66.7	82.0	78.3
	CLIP-Adapter [10]	69.1	71.7	30.5	61.6	70.7	86.9	91.9	83.3	94.5	50.5	76.2	71.5
	PLOT++ [2]	71.3	73.9	41.4	88.4	81.3	86.6	93.0	95.4	95.5	66.5	82.8	79.6
ViT-B/16	KgCoOp [43]	70.2	72.6	34.8	73.9	72.8	<u>87.0</u>	93.0	91.5	95.1	65.6	80.0	76.0
	TaskRes [45]	<u>72.3</u>	74.6	40.3	77.5	79.6	86.4	92.0	<u>96.0</u>	95.3	66.7	81.6	78.4
	MaPLe [16]	71.3	73.2	33.8	82.8	71.3	87.2	<u>93.1</u>	90.5	95.1	63.0	79.5	76.4
	ProGrad [53]	71.3	73.0	37.7	77.8	78.7	86.1	92.2	95.0	94.8	63.9	80.5	77.4
	LP++ [13]	72.1	<u>75.1</u>	39.0	78.2	76.4	86.8	91.8	95.2	95.5	<u>67.7</u>	81.9	78.2
	CLIP-LoRA [47]	<u>72.3</u>	74.7	45.7	89.7	82.1	83.1	91.7	96.3	<u>95.6</u>	67.5	<u>84.1</u>	80.3
	MMA [42]	71.9	74.7	38.9	69.7	76.8	86.4	92.9	94.6	<u>95.6</u>	66.9	82.9	77.4
	2SFS	72.5	75.5	<u>44.3</u>	<u>89.1</u>	<u>81.9</u>	86.1	92.9	95.9	96.1	68. 7	84.4	80.7
	Zero-Shot [33]	61.9	62.0	19.3	45.1	60.4	80.5	87.5	67.0	91.1	42.6	62.2	61.8
	CoOp [52] (ctx=16)	65.5	69.2	29.1	76.4	71.3	76.3	87.4	92.7	93.8	61.7	76.5	72.7
	CoCoOp [51]	65.8	68.9	20.3	58.1	63.4	81.6	90.1	77.3	93.8	57.4	72.4	68.1
	TIP-Adapter-F [50]	66.8	71.2	32.1	75.0	72.6	81.3	89.8	90.4	94.5	63.6	78.0	74.1
	CLIP-Adapter [10]	64.2	69.3	23.5	55.2	65.4	81.5	89.3	78.0	93.9	50.8	73.0	67.6
	PLOT++ [2]	66.2	71.0	31.7	87.1	73.5	78.2	88.4	93.8	94.4	62.9	79.1	75.1
ViT-B/32	KgCoOp [43]	65.1	69.5	24.7	66.2	65.0	81.7	90.3	83.1	94.5	61.1	74.7	70.5
	TaskRes [45]	67.4	71.9	31.9	74.9	73.8	80.6	89.1	<u>93.5</u>	<u>94.8</u>	<u>64.5</u>	78.4	74.6
	MaPLe [16]	66.3	70.3	25.4	79.0	63.7	81.9	<u>90.9</u>	81.1	94.4	59.8	75.0	71.6
	ProGrad [53]	66.1	71.1	29.0	73.5	71.8	80.0	89.1	92.1	94.2	62.3	75.7	73.2
	LP++ [13]	67.1	<u>72.2</u>	30.3	78.8	71.2	81.5	89.3	92.4	94.6	64.2	78.4	74.5
	CLIP-LoRA [47]	<u>67.2</u>	72.1	36.1	88.8	<u>74.4</u>	76.7	87.7	92.4	<u>94.8</u>	63.7	80.1	<u>75.8</u>
	MMA [42]	66.7	<u>72.2</u>	29.6	56.2	70.4	81.0	91.0	90.7	94.6	64.4	78.7	72.3
	2SFS	<u>67.2</u>	73.1	<u>35.2</u>	<u>88.7</u>	75.4	80.4	90.4	93.4	95.4	65.9	80.2	76.8
	Zero-Shot [33]	72.9	67.6	32.6	58.0	76.8	91.0	93.6	79.4	94.9	53.6	74.2	72.2
	CoOp [52] (ctx=16)	76.8	75.0	51.2	82.8	86.4	88.6	94.0	<u>98.0</u>	96.7	69.4	85.1	82.2
	CoCoOp [51]	77.4	75.6	43.3	77.0	81.4	91.6	95.3	93.0	97.0	67.9	84.5	80.4
	TIP-Adapter-F [50]	77.8	76.7	50.4	84.9	85.9	91.4	94.1	97.3	96.9	71.2	86.2	83.0
	CLIP-Adapter [10]	75.7	75.9	40.7	67.9	81.6	91.4	94.3	92.3	96.8	63.8	82.8	78.5
	PLOT++ [2]	77.8	77.0	43.2	87.0	84.6	89.6	93.3	96.3	96.8	69.5	84.8	81.8
ViT-L/14	KgCoOp [43]	76.7	76.2	45.9	82.1	82.3	91.6	95.1	95.2	<u>97.3</u>	70.8	85.7	81.7
	TaskRes [45]	77.9	76.0	51.1	81.1	85.7	91.1	94.5	96.7	96.9	69.4	85.6	82.4
	MaPLe [16]	78.0	77.2	42.9	80.7	81.8	90.1	95.0	95.8	96.8	69.5	85.1	81.2
	ProGrad [53]	77.7	76.1	49.9	83.6	86.2	90.8	95.1	97.8	96.7	69.9	85.4	82.7
	LP++ [13]	78.4	78.4	50.8	85.0	85.2	91.4	94.4	97.9	97.6	72.1	86.0	83.4
	CLIP-LoRA [47]	78.5	78.0	<u>57.5</u>	90.0	88.7	89.7	94.2	<u>98.0</u>	97.0	<u>72.2</u>	<u>88.3</u>	84.7
	MMA [42]	78.6	<u>78.8</u>	50.9	61.4	85.8	91.5	95.1	97.7	97.1	71.9	86.2	81.4
	2SFS	78.6	79.2	57.6	<u>89.8</u>	88.2	91.4	<u>95.2</u>	98.3	97.2	74.2	88.4	85.3

Table 10. *All-to-all* experiments with $\mathbf{k} = \mathbf{8}$ shots, using ViT-B/16, ViT-B/32, and ViT-L/14. Formatting follows Tab. 2.

Figure 6. Breakpoints consistently emerging for UCF-101 [37] and EuroSAT [11], regardless of the PEFT technique used in our study. The pattern appears particularly evident with EuroSAT (bottom).

Figure 7. Breakpoint further confirmed for both LoRA [12] and BitFit [46] on ImageNet [34] and SUN397 [40]. For Layer Normalization, we speculate that the more balanced data-to-parameter ratio, given the larger number of examples in these datasets and the smaller number of parameters of LayerNorm, has a regularizing effect, which avoids breaking and leads to saturation.

Figure 8. Understanding the failure cases of Sec. 5.3 through the lens of breakpoints. On Oxford Pets [32] and Food-101 [1], base accuracy overfits or saturates right after degradation on novel accuracy, which leads the second stage of 2SFS to train a classifier on disrupted base features since α is fixed. These visualizations suggest that α and M should be tuned explicitly for these benchmarks, which we avoid to strive for an evaluation as realistic as possible.

Table 11. Experiments in *base-to-novel* generalization with the ViT-B/16 visual backbone k=4 shots per base class.

Average across datasets.								
Method	Base	Novel	HM					
CLIP [33]	69.34	74.22	71.70					
MMA [42]	80.13	78.57	74.90					
2SFS	84.64	78.53	78.88					
Oxford Flowers								
Method	Base	Novel	HM					
CLIP [33]	72.08	77.80	74.83					
MMA [42]	91.07	75.07	82.30					
2SFS	94.94	76.26	84.58					
Food101								
Method	Base	Novel	HM					
CLIP [33]	90.10	91.22	90.66					
MMA [42]	89.77	91.10	90.43					
2SFS	88.91	91.40	90.14					
DTD								
Method	Base	Novel	HM					
CLIP [33]	53.24	59.90	56.37					
MMA [42]	63.50	63.57	63.53					
2SFS	76.81	65.02	70.42					

ImageNet								
Method	Base	Novel	HM					
CLIP [33]	72.43	68.14	70.22					
MMA [42]	75.37	70.10	72.64					
2SFS	75.68	70.27	72.87					
Oxford Pets								
Method	Base	Novel	HM					
CLIP [33]	91.17	97.26	94.12					
MMA [42]	91.30	97.07	94.10					
2SFS	94.58	97.48	96.01					
F	FGVC Aircraft							
Method	Base	Novel	HM					
CLIP [33]	27.19	36.29	31.09					
MMA [42]	31.97	34.03	32.97					
2SFS	39.36	35.67	37.42					
	EuroSAT							
Method	Base	Novel	HM					
CLIP [33]	56.48	64.05	60.03					
MMA [42]	50.13	69.93	58.40					
2SFS	91.29	75.10	82.41					

	Caltech101							
Method	Base	Novel	HM					
CLIP [33]	96.84	94.00	93.73					
MMA [42]	97.33	94.57	95.93					
2SFS	98.13	94.21	96.13					
Stanford Cars								
Method	Base	Novel	HM					
CLIP [33]	63.37	74.89	68.65					
MMA [42]	71.30	74.07	72.66					
2SFS	74.45	75.98	75.21					
	SUN3	897						
Method	Base	Novel	HM					
Method CLIP [33]	Base 69.36	Novel 75.35	HM 72.23					
Method CLIP [33] MMA [42]	Base 69.36 79.37	Novel 75.35 78.53	HM 72.23 78.95					
Method CLIP [33] MMA [42] 2SFS	Base 69.36 79.37 80.23	Novel 75.35 78.53 78.46	HM 72.23 78.95 79.33					
Method CLIP [33] MMA [42] 2SFS	Base 69.36 79.37 80.23 UCF1	Novel 75.35 78.53 78.46 01	HM 72.23 78.95 79.33					
Method CLIP [33] MMA [42] 2SFS Method	Base 69.36 79.37 80.23 UCF1 Base	Novel 75.35 78.53 78.46 01 Novel	HM 72.23 78.95 79.33					
Method CLIP [33] MMA [42] 2SFS Method CLIP [33]	Base 69.36 79.37 80.23 UCF1 Base 70.53	Novel 75.35 78.53 78.46 01 Novel 77.50	 HM 72.23 78.95 79.33 HM 73.85 					
Method CLIP [33] MMA [42] 2SFS Method CLIP [33] MMA [42]	Base 69.36 79.37 80.23 UCF1 Base 70.53 80.13	Novel 75.35 78.53 78.46 01 Novel 77.50 78.57	HM 72.23 78.95 79.33 HM 73.85 79.34					

Average across datasets.							
Method	Base	Novel	HM				
CLIP [33]	69.34	74.22	71.70				
MMA [42]	84.80	78.10	76.68				
2SFS	86.37	78.58	79.74				
Oxford Flowers							
Method	Base	Novel	HM				
CLIP [33]	72.08	77.80	74.83				
MMA [42]	95.37	75.43	84.24				
2SFS	96.68	76.36	85.33				
Food101							
Method	Base	Novel	HM				
CLIP [33]	90.10	91.22	90.66				
MMA [42]	89.53	91.07	90.29				
2SFS	89.02	91.36	90.17				
DTD							
Method	Base	Novel	HM				
CLIP [33]	53.24	59.90	56.37				
MMA [42]	77.07	64.47	70.21				
2SFS	80.17	64.45	71.46				

ImageNet									
Method	Base	Novel	HM						
CLIP [33]	72.43	68.14	70.22						
MMA [42]	76.43	70.07	73.11						
2SFS	76.97	70.67	73.69						
	Oxford Pets								
Method	Base	Novel	HM						
CLIP [33]	91.17	97.26	94.12						
MMA [42]	94.90	97.50	96.18						
2SFS	94.95	97.80	96.35						
FGVC Aircraft									
F	GVC A	ircraft							
F	GVC A Base	ircraft Novel	HM						
F Method CLIP [33]	GVC A Base 27.19	ircraft Novel 36.29	HM 31.09						
F Method CLIP [33] MMA [42]	GVC A Base 27.19 37.53	ircraft Novel 36.29 34.57	HM 31.09 35.99						
F Method CLIP [33] MMA [42] 2SFS	GVC A Base 27.19 37.53 42.96	ircraft Novel 36.29 34.57 36.39	HM 31.09 35.99 39.40						
F Method CLIP [33] MMA [42] 2SFS	GVC A Base 27.19 37.53 42.96 EuroS	ircraft Novel 36.29 34.57 36.39 AT	HM 31.09 35.99 39.40						
F Method CLIP [33] MMA [42] 2SFS Method	GVC A Base 27.19 37.53 42.96 EuroS Base	ircraft Novel 36.29 34.57 36.39 AT Novel	HM 31.09 35.99 39.40 HM						
F Method CLIP [33] MMA [42] 2SFS Method CLIP [33]	GVC A Base 27.19 37.53 42.96 EuroS Base 56.48	Novel 36.29 34.57 36.39 AT Novel 64.05	HM 31.09 35.99 39.40 HM 60.03						
F Method CLIP [33] MMA [42] 2SFS Method CLIP [33] MMA [42]	GVC A Base 27.19 37.53 42.96 EuroS Base 56.48 50.30	ircraft Novel 36.29 34.57 36.39 AT Novel 64.05 69.97	HM 31.09 35.99 39.40 HM 60.03 58.53						

Method	Base	Novel	HM				
CLIP [33]	96.84	94.00	93.73				
MMA [42]	97.77	93.87	95.78				
2SFS	98.13	94.18	96.11				
Stanford Cars							
Method	Base	Novel	HM				
CLIP [33]	63.37	74.89	68.65				
MMA [42]	75.00	74.80	74.90				
2SFS	78.99	75.45	77.18				
SUN397							
Method	Base	Novel	HM				
CLIP [33]	69.36	75.35	72.23				
MMA [42]	80.73	78.33	79.51				
28FS	81.25	78 76	79 99				

Caltech101

2SFS	81.25	78.76	79.99
	UCF1	01	
Method	Base	Novel	HM
CLIP [33] MMA [42]	70.53 84.80	77.50 78.10	73.85 81.31
2SFS	86.37	78.58	82.29

Table 13. Experiments in *base-to-novel* generalization with the ViT-B/32 visual backbone k=4 shots per base class.

Avera	ge acros	ss datas	ets.			
Method	Base	Novel	HM			
CLIP [33] MMA [42]	67.27 77.20	71.68 74.43	69.41 70.55			
2SFS	82.04	74.44	75.00			
0	Oxford Flowers					
Method	Base	Novel	HM			
CLIP [33] MMA [42]	72.36 87.03	73.69 70.83	73.02 78.10			
2SFS	93.99	71.70	81.35			
	Food1	01				
Method	Base	Novel	HM			
CLIP [33] MMA [42]	85.30 85.03	86.89 86.40	86.09 85.71			
2SFS	84.04	86.95	85.47			
2SFS	84.04 DTI	86.95	85.47			
2SFS Method	84.04 DTI Base	86.95) Novel	85.47 HM			
2SFS Method CLIP [33] MMA [42]	84.04 DTI Base 54.17 62.13	86.95 Novel 58.21 57.70	85.47 HM 56.12 59.83			

ImageNet					
Method	Base	Novel	HM		
CLIP [33]	67.49	64.06	65.73		
MMA [42]	69.77	65.63	67.64		
2SFS	70.51	65.91	68.13		
Oxford Pets					
Method	Base	Novel	HM		
CLIP [33]	90.64	96.87	93.65		
MMA [42]	88.43	96.33	92.21		
2SFS	92.50	95.25	93.86		
FGVC Aircraft					
F	GVC A	ircraft			
F	GVC A Base	ircraft Novel	HM		
F Method CLIP [33]	GVC A Base 21.25	ircraft Novel 29.27	HM 24.62		
F Method CLIP [33] MMA [42]	GVC A Base 21.25 25.27	ircraft Novel 29.27 27.90	HM 24.62 26.52		
F Method CLIP [33] MMA [42] 2SFS	GVC A Base 21.25 25.27 33.11	ircraft Novel 29.27 27.90 30.23	HM 24.62 26.52 31.61		
F Method CLIP [33] MMA [42] 2SFS	GVC A Base 21.25 25.27 33.11 EuroS	ircraft Novel 29.27 27.90 30.23 AT	HM 24.62 26.52 31.61		
F Method CLIP [33] MMA [42] 2SFS Method	GVC A Base 21.25 25.27 33.11 EuroS Base	ircraft Novel 29.27 27.90 30.23 AT Novel	HM 24.62 26.52 31.61 HM		
F Method CLIP [33] MMA [42] 2SFS Method CLIP [33]	GVC A Base 21.25 25.27 33.11 EuroS Base 55.14	ircraft Novel 29.27 27.90 30.23 AT Novel 69.77	 HM 24.62 26.52 31.61 HM 61.60 		
F Method CLIP [33] MMA [42] 2SFS Method CLIP [33] MMA [42]	GVC A Base 21.25 25.27 33.11 EuroS Base 55.14 41.73	ircraft Novel 29.27 27.90 30.23 AT Novel 69.77 57.17	HM 24.62 26.52 31.61 HM 61.60 48.24		

Caltech101				
Method	Base	Novel	HM	
CLIP [33]	94.06	94.00	94.03	
MMA [42]	96.90	93.03	94.93	
2SFS	97.16	93.52	95.31	
	Stanford	l Cars		
Method	Base	Novel	HM	
CLIP [33]	60.72	69.74	64.92	
MMA [42]	66.23	69.17	67.67	
2SFS	69.22	70.84	70.02	
	SUN3	897		
Method	Base	Novel	HM	
CLIP [33]	69.80	73.01	71.37	
MMA [42]	77.37	76.40	76.88	
2SFS	78.23	76.34	77.27	
	UCF1	01		
Method	Base	Novel	НМ	
CLIP [33]	69.08	72.96	70.97	
MMA [42]	77.20	74.43	75.79	
2SFS	82.04	74.44	78.05	

Table 12. Experiments in *base-to-novel* generalization with the ViT-B/16 visual backbone k=8 shots per base class.

Table 14 Ex	periments in	hase-to-novel	generalization	with the	ViT-B/32	visual ł	hackbone	k=8 sho	ots ner	base of	class
1401C 14. LA	perments m	buse-io-novei	generalization	with the	VII-D/52	visual t	Dackbone	$\mathbf{n} = 0$ since	ns per	Dase v	ciass

-

Average across datasets.				
Method	Base	Novel	HM	
CLIP [33]	67.27	71.68	69.41	
MMA [42]	81.67	73.83	72.06	
2SFS	84.21	74.62	75.88	
Oxford Flowers				
Method	Base	Novel	HM	
CLIP [33]	72.36	73.69	73.02	
MMA [42]	92.97	71.63	80.92	
2SFS	95.79	71.35	81.78	
	Food1	01		
Method	Base	Novel	HM	
CLIP [33]	85.30	86.89	86.09	
MMA [42]	85.03	86.53	85.77	
2SFS	84.15	87.33	85.71	
	DTI)		
Method	Base	Novel	HM	
CLIP [33]	54.17	58.21	56.12	
MMA [42]	73.70	56.07	63.69	
2SES	75 85	55 23	63.92	

ImageNet					
Method	Base	Novel	HM		
CLIP [33]	67.49	64.06	65.73		
MMA [42]	71.03	65.17	67.97		
2SFS	71.39	66.24	68.72		
Oxford Pets					
Method	Base	Novel	HM		
CLIP [33]	90.64	96.87	93.65		
MMA [42]	93.57	95.57	94.56		
2SFS	92.79	95.58	94.16		
F	GVC A	ircraft			
Method	Base	Novel	HM		
CLIP [33]	21.25	29.27	24.62		
MMA [42]	28.63	27.67	28.14		
2SFS	35.47	30.35	32.71		
	EuroS	AT			
Method	Base	Novel	HM		
CLIP [33]	55.14	69.77	61.60		
MMA [42]	41.80	57.20	48.30		
2SFS	94.18	68.24	79.14		

Caltech101						
Method	Base	Novel	HM			
CLIP [33] MMA [42]	94.06 97.13	94.00 92.57	94.03 94.80			
2SFS	97.61	93.56	95.54			
Stanford Cars						
Method	Base	Novel	HM			
CLIP [33] MMA [42]	60.72 69.83	69.74 69.80	64.92 69.81			
2SFS	73.48	70.71	72.07			
	SUN3	897				
Method	Base	Novel	HM			
CLIP [33] MMA [42]	69.80 78.83	73.01 76.10	71.37 77.44			
2SFS	79.49	77.13	78.29			
UCF101						
	UCF1	01				
Method	UCF1 Base	01 Novel	НМ			
Method CLIP [33] MMA [42]	UCF1 Base 69.08 81.67	01 Novel 72.96 73.83	HM 70.97 77.55			

Table 15. Experiments in *base-to-novel* generalization with the ViT-L/14 visual backbone k=4 shots per base class.

Average across datasets.					
Method	Base	Novel	HM		
CLIP [33] MMA [42]	76.18 82.70	80.08 81.60	78.08 80.25		
2SFS	88.11	82.15	82.82		
Oxford Flowers					
Method	Base	Novel	HM		
CLIP [33] MMA [42]	80.34 92.93	83.05 81.87	81.67 87.05		
2SFS	97.94	81.77	89.13		
	Food1	01			
Method	Base	Novel	HM		
CLIP [33] MMA [42]	93.75 93.70	94.82 94.57	94.28 94.13		
CLIP [33] MMA [42] 2SFS	93.75 93.70 93.11	94.82 94.57 94.76	94.28 94.13 93.93		
CLIP [33] MMA [42] 2SFS	93.75 93.70 93.11 DTI	94.82 94.57 94.76	94.28 94.13 93.93		
CLIP [33] MMA [42] 2SFS Method	93.75 93.70 93.11 DTI Base	94.82 94.57 94.76) Novel	94.28 94.13 93.93 HM		
CLIP [33] MMA [42] 2SFS Method CLIP [33] MMA [42]	93.75 93.70 93.11 DTI Base 59.14 65.90	94.82 94.57 94.76 Novel 67.87 67.00	94.28 94.13 93.93 HM 63.21 66.45		

ImageNet						
Method	Base	Novel	HM			
CLIP [33]	79.18	74.04	76.53			
MMA [42]	82.00	76.67	79.25			
2SFS	81.35	75.90	78.53			
	Oxford Pets					
Method	Base	Novel	HM			
CLIP [33]	93.78	96.53	95.14			
MMA [42]	94.93	98.47	96.67			
2SFS	96.46	98.56	97.50			
FGVC Aircraft						
F	GVC A	ircraft				
F	GVC A Base	ircraft Novel	HM			
F Method CLIP [33]	GVC A Base 37.52	ircraft Novel 44.21	HM			
F Method CLIP [33] MMA [42]	GVC A Base 37.52 42.57	ircraft Novel 44.21 42.40	HM 40.59 42.48			
F Method CLIP [33] MMA [42] 2SFS	GVC A Base 37.52 42.57 51.58	ircraft Novel 44.21 42.40 44.57	HM 40.59 42.48 47.82			
F Method CLIP [33] MMA [42] 2SFS	GVC A Base 37.52 42.57 51.58 EuroS	ircraft Novel 44.21 42.40 44.57 AT	HM 40.59 42.48 47.82			
F Method CLIP [33] MMA [42] 2SFS Method	GVC A Base 37.52 42.57 51.58 EuroS Base	ircraft Novel 44.21 42.40 44.57 AT Novel	HM 40.59 42.48 47.82 HM			
F Method CLIP [33] MMA [42] 2SFS Method CLIP [33]	GVC A Base 37.52 42.57 51.58 EuroS Base 70.93	ircraft Novel 44.21 42.40 44.57 44.57 AT Novel 82.90	HM 40.59 42.48 47.82 HM 76.45			
F Method CLIP [33] MMA [42] 2SFS Method CLIP [33] MMA [42]	GVC A Base 37.52 42.57 51.58 EuroS Base 70.93 72.50	ircraft Novel 44.21 42.40 44.57 AT Novel 82.90 72.20	HM 40.59 42.48 47.82 HM 76.45 72.35			

Caltech101					
Method	Base	Novel	HM		
CLIP [33] MMA [42]	95.61 97.30	95.41 97.30	95.51 97.30		
2SFS	98.36	97.09	97.72		
Stanford Cars					
Method	Base	Novel	HM		
CLIP [33] MMA [42]	74.56 79.83	84.65 85.03	79.29 82.35		
2SFS	82.50	85.11	83.79		
	SUN3	897			
Method	Base	Novel	HM		
CLIP [33] MMA [42]	73.23 82.17	77.71 81.80	75.40 81.98		
2SFS	82.91	81.20	82.05		
	UCF1	01			
Method	Base	Novel	HM		
CLIP [33] MMA [42]	79.94 82.70	79.66 81.60	79.80 82.15		

Table 16. Experiments in base-to	-novel generalization with the	ViT-L/14 visual backbone $k=8$ shot	s per base class
----------------------------------	--------------------------------	-------------------------------------	------------------

Average across datasets.						
Base	Novel	HM				
76.18	80.08	78.08				
86.30	80.73	81.54				
88.28	82.24	83.66				
xford F	lowers					
Base	Novel	HM				
80.34	83.05	81.67				
97.97	80.30	88.26				
98.67	81.21	89.09				
Food101						
Base	Novel	HM				
93.75	94.82	94.28				
93.87	94.87	94.37				
93.81	94.76	94.28				
DTD						
Base	Novel	HM				
59.14	67.87	63.21				
78.13	69.90	73.79				
	ge acros Base 76.18 86.30 88.28 xford F Base 80.34 97.97 98.67 Food I Base 93.75 93.87 93.81 DTI Base 59.14 78.13	Base Novel 76.18 80.08 86.30 80.73 88.28 82.24 Xford Flowers Base Base Novel 80.34 83.05 97.97 80.30 98.67 81.21 Food101 Base 93.75 94.82 93.81 94.76 DTD Base Base Novel 93.81 94.76 DTD Base Base Novel				

	ImageNet				
	Method	Base	Novel	HM	
	CLIP [33]	79.18	74.04	76.53	
	MMA [42]	82.63	76.80	79.61	
	2SFS	82.43	76.46	79.34	
	Oxford Pets				
	Method	Base	Novel	HM	
	CLIP [33]	93.78	96.53	95.14	
	MMA [42]	95.77	98.33	97.03	
	2SFS	96.15	98.47	97.30	
	FGVC Aircraft				
	Method	Base	Novel	HM	
Ì	CLIP [33]	37.52	44.21	40.50	
				40.59	
	MMA [42]	46.50	41.23	40.39	
	MMA [42] 2SFS	46.50 55.00	41.23 44.49	40.39 43.71 49.19	
	MMA [42] 2SFS	46.50 55.00 EuroS	41.23 44.49 AT	40.39 43.71 49.19	
	MMA [42] 2SFS Method	46.50 55.00 EuroS. Base	41.23 44.49 AT Novel	40.39 43.71 49.19 HM	
	MMA [42] 2SFS Method CLIP [33]	46.50 55.00 EuroS. Base 70.93	41.23 44.49 AT Novel 82.90	40.39 43.71 49.19 HM 76.45	
	MMA [42] 2SFS Method CLIP [33] MMA [42]	46.50 55.00 EuroS. Base 70.93 72.73	41.23 44.49 AT Novel 82.90 72.00	40.39 43.71 49.19 HM 76.45 72.36	

Caltech101						
Method	Base	Novel	HM			
CLIP [33]	95.61	95.41	95.51			
MMA [42]	98.30	96.60	97.44			
2SFS	98.52	96.62	97.56			
Ś	Stanford	l Cars				
Method	Base	Novel	HM			
CLIP [33]	74.56	84.65	79.29			
MMA [42]	82.63	84.20	83.41			
2SFS	85.51	84.97	85.24			
	SUN3	397				
Method	Base	Novel	HM			
CLIP [33]	73.23	77.71	75.40			
MMA [42]	83.67	81.40	82.52			
2SFS	84.25	81.84	83.03			
UCF101						
Method	Base	Novel	HM			
CLIP [33]	79.94	79.66	79.80			
MMA [42]	86.30	80.73	83.42			
2SFS	88.28	82.24	85.15			