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1. Additional Implementation Details
Our implementation is based on PyTorch [12]. We train
DarkIR (following LEDNet [19]) on the LOLBlur dataset.
During training, we randomly crop 384× 384 patches, and
apply standard flip and rotation augmentations. The mini-
batch size is set to 32 using an H100 GPU.

As our optimizer we use AdamW [8] by setting β1 =
0.9, β2 = 0.9 and weight decay to 1e−3. The learning rate
is initialized to 5e−4 and is updated by the cosine annealing
strategy [7] to a minimum of 1e−6. We repeat this configu-
ration for re-training the other methods in LOLBlur dataset.
Note that we use the official open-source implementation of
the other methods, or previously reported results.

The multi-task model was trained using the same setup.
The only difference is the use of LOLv2 and LSRW as ad-
ditional datasets. This model achieves essentially state-of-
the-art results on real low-light enhancement benchmarks,
while maintaining the performance on LOLBlur.

2. Additional ablation Studies
We studied the influence of the optimization losses. The
results can be seen on Table A, where we can check that by
introducing the Ledge, Llol and Lpercep the model achieves
the best combination of distortion and perceptual metrics.

Table A. Ablation study on our loss functions. We train DarkIR
using different loss setups. Adding the perceptual loss (Lpercep),
edge loss (Ledge) and the architecture guiding loss (Llol) helps to
improve the overall performance.

PSNR↑ SSIM↑ LPIPS↓
Lpixel 26.34 0.856 0.205

Lpixel + Llol 26.19 0.861 0.197

Lpixel + Llol + Ledge 26.717 0.874 0.182

Lpixel + Lpercep + Ledge 26.61 0.877 0.171

Lpixel + Llol + Ledge + Lpercep 26.9 0.874 0.176

Table B. Ablation study on the feature propagation between en-
coder and decoder. We found simple addition to be optimal.

Params↓ (M) MACs↓ (G) PSNR↑ SSIM↑ LPIPS↓
CurveNLU 4.05 14.14 26.55 0.872 0.176

CurveNLU-DepthWise 3.33 7.42 26.64 0.872 0.177

1DLUT 3.39 7.87 26.69 0.873 0.175

1DLUT-double 3.49 8.9 26.63 0.875 0.175

Single Addition 3.31 7.25 26.9 0.874 0.176
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Figure A. Neural blocks proposed for the feature propagation. The
difference between both is the presence of a channel expansion in
1DLUT-double.

In addition, we studied different skip connections for the
feature propagation between encoder and decoder. The pro-
posed feature propagation takes the form of:

y = fprop(encfeat) + decfeat (1)

where fprop is the proposed feature block applied to the
encoder features (encfeat) added to the decoder features
(decfeat). Besides the CurveNLU proposed by LEDNet
[19] we evaluate the results obtained by using only depth-
wise convolutions in this given block. To sum up we in-
corporate a variation of this block that uses only point-wise
convolutions, resembling the behaviour of a look-up table
(LUT). Figure A represents the proposed 1DLUT varia-
tions. In Table B the results of this ablation study are show-
cased. We see that the single addition, i.e fprop = Identity
gets the best performance, so we did not consider adding
any of the discussed blocks to the DarkIR architecture.
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Table C. Quantitative comparison on five real-workd unpaired LLIE datasets using the perceptual quality metrics BRISQUE [10] and
NIQE [11]. We use reference results from [17].

LLIE DICM LIME MEF NPE VV
Unpaired BRISQUE↓ NIQE↓ BRISQUE↓ NIQE↓ BRISQUE↓ NIQE↓ BRISQUE↓ NIQE↓ BRISQUE↓ NIQE↓

KinD [18] 48.72 5.15 39.91 5.03 49.94 5.47 36.85 4.98 50.56 4.30
ZeroDCE [2] 27.56 4.58 20.44 5.82 17.32 4.93 20.72 4.53 34.66 4.81

RUAS [6] 38.75 5.21 27.59 4.26 23.68 3.83 47.85 5.53 38.37 4.29
SNR-Net [16] 37.35 4.71 39.22 5.74 31.28 4.18 26.65 4.32 78.72 9
CIDNet [17] 21.47 3.79 16.25 4.13 13.77 3.56 18.92 3.74 30.63 3.21
DarkIR-mt 18.69 3.76 21.62 4.07 13.90 3.45 12.88 3.99 26.87 3.74

3. More quantitative results in unpaired data
In addition to the results of unpaired Real-LOLBlur
datasets, in Table C we present the results of our model
in 5 well-known unpaired datasets: LIME [3], DICM [5],
MEF [9], NPE [15] and VV [14]. We use the multi-task
model trained in LOLBLur and in the LOL datasets. We
report BRISQUE [10] and NIQE [11] metrics.

4. More qualitative results in LLIE
As we indicated in the paper, we present more qualitative
results in Figures B, C and D. These results showcase the
power of our multi-task model for LLIE restoration. Then,
in Figures E, F and G we show more qualitative results on
the LLIE-Deblurring task.
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Figure B. Qualitative results compared with state of the art method RetinexFormer [1] and SNR-Net [16] on LOLv2-Real.
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Figure C. Qualitative results compared with state of the art method RetinexFormer [1] and SNR-Net [16] on LOLv2-Synthetic.
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Figure D. Qualitative results on the real-world dataset LSRW-Huawei [4] (top row) and LSRW-Nikon [4] (bottom row).

RetinexformerInput LEDNet Nafnet DarkIR-mRestormer DarkIR-l

Figure E. Qualitative results on RealBlur-Night [13] images. (Zoom in for best view).
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Figure F. Qualitative results in Real-LOLBlur [19] dataset. (Zoom in for best view).
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Figure G. Qualitative results in LOLBlur [19] dataset. As we can see, DarkIR gets sharper and brighter results than the other methods.
(Zoom in for best view).
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